Signal Processing for High Throughput Satellite Communications
The Force Awakens

International Conference on Signal Processing and Communications (SPCOM)
June 12, 2016, Bengalooru

Bhavani Shankar, Sina Maleki
Interdisciplinary Centre for Security, Reliability and Trust (SnT)
University of Luxembourg
Acknowledgements

• SPCOM Organizing Committee
• Former and current members of SIGCOM Research Group
 – Prof. Bjorn Ottersten, Dr. Symeon Chatzinotas, Dr. Eva Lagunas, Dr. Shree Sharma, Dr. Roberto Piazza, Dr. Dimitrios Christopoulos, Dr. Ahmad Gharanjik
 – http://wwwen.uni.lu/snt/research/sigcom
• Colleagues at European Space Agency and Industry
• Audience
Outline

Part I : Setting the stage
 • 4S : Systems, Scenarios, Services, Standards
 • 2C : Channels, Challenges

Part II : The Interference Menace and SP strike back
 • Origin and Impact
 • Mitigation using SP Techniques

Part III : Cognitive SatComs: A New Hope
 • Motivation and Scenarios
 • Impact

Part IV : Sneak Peek and Conclusions
 • Next generation architectures
Satellite Systems: Introduction

- **Initial Concept**
 - Extra-terrestrial Relays
- **Traditional Association**
 - TV Broadcasting
 - Remote Sensing
- **Changing trends**
 - Ubiquitous Connectivity

EXTRA-TERRESTRIAL RELAYS

Can Rocket Stations Give World-wide Radio Coverage?

Although it is possible, by selecting suitable choices of frequencies and routes, to provide telephony circuits between any two points or regions of the earth for a large part of the time, long-distance communication is greatly hampered by the peculiarities of the ionosphere, and these are even occasional when it may be impossible. A true broadcast service, giving constant field strength at all times over the whole globe would be invaluable, not to say indispensable, to a world society.

Unauthorized though the telephony and telegraph position is, that of television is far worse, since ionospheric transmissions cannot be employed at all. The service area of a television station, even on a very good site, is only about a hundred miles across. To cover a small country such as Great Britain would require a network of transmitters, connected by coastal links, waveguides, or VHF relay links. A recent theoretical study has shown that such a system would require repeaters at intervals of fifty miles or less.

A system of this kind could provide television coverage, at a very considerable cost, over the whole of a small country. It would be of the utmost importance to provide a large continent with such a service, and only the main centres of population could be included in the network.

The problem is equally serious when an attempt is made to link television services in different parts of the globe. A relay chain several thousand miles long would cost millions, and transoceanic services would still be impossible. Similar considerations apply to the provision of wide-band frequency modulation and other services, such as high-speed facsimile which can by such means be transmitted in the ultra-high-frequency range.

Space stations proposed in this discussion have so far been limited to the earth's equator and to a height of about 358 miles. If a station were to be built in orbit at a height of about 22,000 miles above the earth's surface, it would be possible to send pictures from almost any point on the earth to any other point on the earth within a few minutes.

The German transatlantic rocket Vl would have reached a maximum height of 200 miles and would have remained in orbit for about a week. The American Andro nerd rocket would have reached a maximum height of 220 miles and would have remained in orbit for about three days. The British rocket would have reached a maximum height of 230 miles and would have remained in orbit for about a day.

The German transatlantic rocket Vl would have reached an altitude of about 200 miles and would have remained in orbit for about a week. The American Andro nerd rocket would have reached an altitude of about 220 miles and would have remained in orbit for about three days. The British rocket would have reached an altitude of about 230 miles and would have remained in orbit for about a day.
Traditional Satellite Communication System

Forward Link

Satellite

Feeder Link

User Link

Return Link

User Beams

User Beams
Ground Segment

- Communications and control systems
 - Earth Station/ Gateway
 - Critical Infrastructure
 - Ground or Mobile Platforms

- Ground Station Network
 - Connections to earth stations, terrestrial network

- Typically “well endowed”
 - Power, Antenna Size, Redundancy

Typical Dish size

<table>
<thead>
<tr>
<th>Dish Size</th>
<th>Band</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.9m, 18 m</td>
<td>C-band</td>
<td>Goonhilly, UK</td>
</tr>
<tr>
<td>19 m, 8 m</td>
<td>Ku-band</td>
<td>Goonhilly, UK</td>
</tr>
<tr>
<td>13.5m, 9.1m</td>
<td>Ka-band</td>
<td>ViaSat</td>
</tr>
</tbody>
</table>
• Processing Complexity not an issue
 • Advanced algorithms in the Modulator/ Demodulator
• Power
 • Typically not a constraint
• Constraint on transmission
 • Spectral Mask

Similar system for receiving from satellite
Space Segment: Orbits

- Orbital Classification
 - GEO, MEO, LEO
 - Van-Allen radiation belts

- GEO Stationary
 - Satellite visible 24hrs
 - Fixed Elevation

- LEO, MEO, HEO......
 - Satellite in relative motion
 - Limited visibility per satellite

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Altitude range (km)</th>
<th>Period/ hrs</th>
<th>Delay ms</th>
<th>Global Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEO (Low Earth)</td>
<td>150-1000</td>
<td>1.5-1.8</td>
<td>7.5</td>
<td>78 (LEOSAT)</td>
</tr>
<tr>
<td>MEO (Medium Earth)</td>
<td>6,000-20,000</td>
<td>3.8-6</td>
<td>75</td>
<td>12 (O3b)</td>
</tr>
<tr>
<td>GEO</td>
<td>36,000</td>
<td>24</td>
<td>270</td>
<td>3 (I4/alphasat)</td>
</tr>
</tbody>
</table>
Space Segment: Communication Satellites

- Sputnik 1, '57
- Telstar 1, '62
- Iridium, '97
- OneWeb, 2017+
- Syncom 3, '64
- Intelsat 1, '65
- ViaSat 1, 2011
- SES12, 2017
Multibeam Satellite Systems

- Single Beam Coverage
 - Traditional systems, Wide coverage
- Multiple beams
 - Smaller beams -> Directive transmission
 - Higher gain, better reception/ smaller antennas
 - Possibility to re-use frequency
 - Enhanced spectral efficiency
 - Other flexibility
 - Transmit power, frequency plan, routing

82 narrow spot beams are flying in KA-SAT (Eutelsat), launched in Dec. 2010 covering Europe – System throughput ~90Gbps

Cellular reuse?
Space Segment: Satellite Constellations

Large LEO Constellations

O3b MEO Constellations

SES GEO Fleet
Traditional bent-pipe satellite: Functionality

<table>
<thead>
<tr>
<th>Component</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNA</td>
<td>Front end Low Noise Amplifier</td>
</tr>
<tr>
<td>LO</td>
<td>Local Oscillator : Frequency conversion</td>
</tr>
<tr>
<td>IMUX</td>
<td>Input Multiplexing Filter : Rejects out of band noise</td>
</tr>
<tr>
<td>HPA</td>
<td>High Power Amplifier</td>
</tr>
<tr>
<td>OMUX</td>
<td>Output Multiplexing Filter : Rejects out of band emissions</td>
</tr>
</tbody>
</table>

Pic Courtesy: Thales, L-3
Innovative Launch Technologies

SpaceX is disrupting the launch business
- Reuse of launch system (Falcon 9)
- Ion thruster (electric propulsion) for GEO deployment
- Drastic cost reduction
- First commercial launcher to deliver to ISS
- Several successful commercial satellite launches
 - Re-usable rockets
Space Segment Constraints

Mass
- Launch costs, Fuel on-board (life-time)
- Addition of components increases mass

Reliability
- Life time: 12-15 years
- Space hardened components
 - Analogue components: time-tested
 - Digital components: few

Power
- Solar powered, total and max power limited
 - Communications, control etc.
- Preferable: passive components
 - Limited on-board digital processing
- Amplifier at high efficiency

Future proof
- Waveform Agnostic processing
User Segment

- Different classes of equipment
 - Mobility Classification
 - Mobile Terminal (satellite phone)
 - Nomadic Terminal (News Gathering)
 - Fixed Terminal (VSAT)
 - Functionality based classification
 - Terminal or Access provision
 - Service Level based classification
 - Consumer grade
 - Professional grade
User Segment: Functionality and Constraints

- Processing Complexity and Power (uplink)
 - Issue in consumer grade
 - No wideband processing
 - Not an issue in professional grade
 - Wideband processing possible
- Constraint on transmission
 - Spectral Mask

Similar system for transmitting to satellite
Spectrum Used

(source ESA)

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maritime</td>
<td>Navigation aids (e.g. loran-C)</td>
</tr>
<tr>
<td>navigation</td>
<td>AM maritime radio</td>
</tr>
<tr>
<td>signals</td>
<td>Shortwave radio, radiotelephony</td>
</tr>
<tr>
<td></td>
<td>VHF TV FM radio, navigation aids</td>
</tr>
<tr>
<td></td>
<td>UHF TV cell phones, GPS</td>
</tr>
<tr>
<td></td>
<td>Satellite/microwave telecommunications</td>
</tr>
<tr>
<td></td>
<td>Radio astronomy, radar landing systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency Bands</th>
<th>Wavelength (km)</th>
<th>Frequency (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLF</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>LF</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>MF</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>HF</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>VHF</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>UHF</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>SHF</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>EHF</td>
<td>1</td>
<td>30</td>
</tr>
</tbody>
</table>

Increasing wavelength, *Increasing frequency*

SATELLITE FREQUENCY

<table>
<thead>
<tr>
<th>Bands</th>
<th>GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1-2</td>
</tr>
<tr>
<td>S</td>
<td>4-8</td>
</tr>
<tr>
<td>C</td>
<td>8-12</td>
</tr>
<tr>
<td>X</td>
<td>12-18</td>
</tr>
<tr>
<td>Ku</td>
<td>18-26</td>
</tr>
<tr>
<td>K</td>
<td>26-40</td>
</tr>
<tr>
<td>Ka</td>
<td>1-40GHz</td>
</tr>
</tbody>
</table>

Sub 6GHz Shared with terrestrial services

Shared with terrestrial services (microwave links)
Services

• Traditional:
 – Broadcast: Satellite DTH (Direct-to-Home) TV
 • Still the core business but meeting increased competition
 • Linear TV on the decline
 • One way communication, no interaction

• New services and applications must be developed
 – Broadband: Internet access
 • Growing business – targets rural areas and developing countries
 • Two way communication, user state available at transmitter
 – Mobile/Maritime/Aeronautical satellite services is potentially a growing market
 • Ubiquitous coverage

• 5G backhauling, broadcast/multicast services
Emerging Market for Broadband & Telemetry

- Services
 - Commercial airlines
 - Passenger internet access
 - Operational services
 - Safety and maintenance
 - ADS-B
 - Telemetry data...

- Bands
 - L (Inmarsat), Ku (Intelsat Epic)
 - Ka band: Global Express
Maritime Mobile Satellite Services

- Niche Market
- Broadband Services
- LEO for global communication (Iridium, Globalstar)
- GEO for broadband (Inmarsat)

- Coverage in the Arctic
- Provisioning more frequencies for ship-ship, ship-shore communications
 - Satellite to enhance coverage
- Challenges
 - Low SNR
 - Low Bandwidth Multiple Access Channel
5G SatComs in Networld2020

- Networld2020: European Technology Platform for communications networks and services.
- Multimedia distribution
 - Broadband-broadcast convergence
- Service continuity
 - Seamless handovers
- Machine to Machine
 - Energy efficiency and security
- Network control signaling offload
 - Non-Geo satellites
Link Budget

<table>
<thead>
<tr>
<th>Ka-band VSAT (SATellite -> VSAT TERMINAL ONLY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite</td>
</tr>
<tr>
<td>EIRP (Max)</td>
</tr>
<tr>
<td>Bandwidth</td>
</tr>
<tr>
<td>Frequency band</td>
</tr>
<tr>
<td>Service</td>
</tr>
<tr>
<td>Broadband interactive, Carrier rate</td>
</tr>
<tr>
<td>Roll_off : 0.25, BW = 10MHz</td>
</tr>
<tr>
<td>Minimum C/N for decoding</td>
</tr>
<tr>
<td>Terminal</td>
</tr>
<tr>
<td>Rx antenna Gain</td>
</tr>
<tr>
<td>Rx Bandwidth</td>
</tr>
<tr>
<td>Noise Temperature</td>
</tr>
<tr>
<td>Link Budget calculation</td>
</tr>
<tr>
<td>OBO (depends on number of carriers)</td>
</tr>
<tr>
<td>G_r</td>
</tr>
<tr>
<td>Receiver G/T</td>
</tr>
<tr>
<td>FSL</td>
</tr>
<tr>
<td>Beam Edge Loss</td>
</tr>
<tr>
<td>Clear sky atm. loss + Polarization loss + pointing loss + rain attenuation (fade margin)</td>
</tr>
<tr>
<td>Terminal Noise</td>
</tr>
<tr>
<td>Boltzmann Constant</td>
</tr>
<tr>
<td>System Noise Temperature (taking into account rain attenuation)</td>
</tr>
<tr>
<td>Noise Bandwidth (10 MHz)</td>
</tr>
<tr>
<td>Received noise power</td>
</tr>
<tr>
<td>C/N (beam centre)</td>
</tr>
<tr>
<td>C/N (beam edge)</td>
</tr>
<tr>
<td>C/I (multibeam, beam edge)</td>
</tr>
<tr>
<td>C/I (multibeam, beam centre)</td>
</tr>
<tr>
<td>C/13</td>
</tr>
<tr>
<td>C/I (adj satellite)</td>
</tr>
<tr>
<td>C/(N+I) : clear sky, beam centre</td>
</tr>
<tr>
<td>C/(N+I) : clear sky, beam edge</td>
</tr>
</tbody>
</table>

Exploiting antenna gain
LoS !!
Channels: Fixed Terminals

- Position fixed to ensure LoS channel
 - No scatterers at Satellite

- Tropospheric effects
 - Attenuation due to rain
 - Cloud attenuation
 - Scintillations
 - Gaseous absorptions
 - Signal depolarization

- Ionospheric effects (< 3 GHz)
 - Faraday rotation
Channels: Fixed Terminals

<table>
<thead>
<tr>
<th>System</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible rain attenuation</td>
<td>AWGN</td>
</tr>
<tr>
<td>Rain Attenuation (in dB)</td>
<td>Log normal, Gamma (depending on amount of rainfall)</td>
</tr>
<tr>
<td>Cloud blockage</td>
<td>Log normal -- On/off</td>
</tr>
<tr>
<td>Scintillations</td>
<td>Fast Fading</td>
</tr>
</tbody>
</table>
Channels: Mobile Terminals

- Longer-term variations: variations due to changes in scenarios
 - Line of Sight
 - Blockage
 - Shadowing
- 3 state Markov model
Land Mobile Satellite (LMS) Channel

- Short-term variations
 - Shadowing of the LoS component
 - Scattering leading to NLoS components

- Typical Model
 - LoS
 \[|h_{ij}| \exp(j\phi_{ij}) = |\bar{h}_{ij}| \exp(j\phi_{ij}) + |\tilde{h}_{ij}| \exp(j\tilde{\phi}_{ij}) \]

 LoS Component
 - Log-normally distributed amplitude
 - Parameters: Mean, Standard Dev
 - Uniform phase

 NLoS Component
 - Rayleigh distributed amplitude
 - Parameter: Power
 - Uniform phase

\[\text{Distance traveled (m)} \]

\[\text{Received signal} \]
Satellite Communication Standards

• Canvas of standard bodies
 – Proprietary aspects

• DVB : well known family
 – SH (satellite-handheld)
 – S. (Satellite)
 – RCS (return channel over satellite)

• Focus : DVB-S2
 – Extension S2x
DVB-S2 PHY Layer
Physical Layer of DVB-S2

- Forward Error Correction
 - Inner: LDPC, Outer: BCH
- Bit Interleaving
- Modulation
 - BPSK, QPSK, APSK

- Framing
 - Pilot insertion, scrambling
- Single Carrier Waveform

Roll-offs: 0.05-0.35
Satellite Networks – Technical Challenges

- Design of a Communication Network rather than broadcast link capable of delivering multiple services
- Satellite Communications (SatCom) striving to increase offered capacity (analogous to terrestrial developments LTE, 5G)
- Reduce **the cost per bit** via satellite
- Broadband Internet penetration still low in rural areas
- Cope with changes in traffic evolution via satellite
 - Traditional broadcasting of audio & video is changing: HDTV, 3DTV
 - New services: P2P, Video-on-Demand, non-linear TV, growing Internet traffic
 - Traffic imbalance between uplink/downlink is reducing
- Different challenges to increase capacity and deliver reliable services for:
 - Fixed satellite terminals (Fixed SatCom)
 - Mobile satellite terminal (Mobile SatCom)
SatCom vis-à-vis Terrestrial

- After satellite launch, no possibility of making big modifications
 - Manufacturers & operators very conservative wrt novel DSP approaches
 - Effort to add extra processing to the Gateway instead of on-board → vast majority of commercial satellites are transparent (bent-pipe) – this is changing!
- Long propagation delay, especially for GEO (~0.5s for round-trip)
- SatCom extremely power limited (GEO is ~36,000km away)
 - Necessary to operate close to saturation in non-linear HPA → intermodulation & non-linear impairments
 - In mobile SatCom deep urban reception not feasible → low coding rates and long time interleaving are needed
- Large differences in terms of wave propagation & channel characteristics
 - SatCom > 10GHz: rain & cloud attenuation, gaseous absorption, scintillations
 - Mobile SatCom: Fading depends on elevation – line-of-sight component often necessary
 - Longer coherence time for channel
Summary

- Satellite Systems
 - Orbits, Segments
- Scenarios
 - Broadcasting, Broadband
- Services
 - DTH, Internet, Backhauling, 5G
- Standards
 - DVB-S2
- Channels
 - AWGN, Log-normal, LMS
- Challenges
References
Enhancing Throughput in SatCom
The menace of interference
Sources of Impairments

– Noise (dominated by receiver)
– Channel fading
– Intra System Interference
 • Intermodulation
 – Non-linear operation of the High Power Amplifier
 • Co-channel
 – Reuse of frequencies in multibeam systems
 • Adjacent transponder (adjacent channel interference)
 • Cross polarization
– Inter System Interference
 • Adjacent Satellite interference
 • Misalignments, jamming etc
Need to mitigate interference

• To enhance higher spectral efficiency
 – High Rate Broadcast Applications (UHDTV, 3DTV)
 – High Rate Broadband Internet (5G)
 – Reduce the cost per bit

• To obtain higher on-board power efficiency
 – Energy is a fundamental but scarce resource
 • To achieve the required Link-budget
 – Optimize the payload architecture
 • Enabling HW resource sharing
 • Reduce on-board HW/cost/weight
 • Increase the number of payloads
Satellite Link: Impairments and Traditional Mitigation

<table>
<thead>
<tr>
<th>Impairments</th>
<th>Mitigation Technique</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink Noise</td>
<td>Improved System FEC</td>
<td>System dimensioning for noise pursued using link budgets</td>
</tr>
<tr>
<td>Fading on the downlink induced by propagation</td>
<td>Adaptive Coding and Modulation (ACM), Variable Coding and Modulation (VCM), Power Control</td>
<td>Traditional Fade Mitigation technique, useful for minor variations; Link provisioned for worst case attenuation to achieve certain availability VCM→Broadcast, ACM→Interactive</td>
</tr>
<tr>
<td>Temporal diversity</td>
<td></td>
<td>Long interleavers (upto 10s) are used for LMS→suitable for broadcasting</td>
</tr>
<tr>
<td>Interference</td>
<td>Power control</td>
<td>Considered as noise and link provisioned using link budgets</td>
</tr>
</tbody>
</table>
Traditional and novel approaches

• Traditional approach
 – Link budget based
 • Static and conservative
 – Does not exploit structure, additional information

• Novel approach: Use of advanced Signal processing algorithms
 – Model, identify, estimate
 – Exploit available information
 – Adapt
Study Case 1: Non-linear interference caused by Power Amplification
Scenario

- Multicarrier / Multi-GW Transmission:
 - Multicarrier payload:
 - Joint Filtering (MUX)
 - Joint Power amplification (HPA)

Advantages:
- Hardware saving
- Payload mass saving
- On-ground flexibility
Satellite Transponder Imperfections

UPLINK

LNA

IMUX

HPA

OMUX

DOWNLINK

LO

IMUX Ku-band (35 MHz)

OMUX Ku-band (36 MHz)
Performance Metrics and Problem Definition

- Transponder Bandwidth Utilization:
 \[S_{eff} = \frac{R}{W_T} \text{ [bit/s/Hz]} \]

- On-board power efficiency:
 \[OBO = \frac{P}{P_{SAT}} \]

- Spectral and Power efficiency trade-off

![Graph showing Central Carrier of a Five Carriers Transponder]
Multicarrier Non-linear Interference

• Single Carrier Distortion
 – Warping
 – Clustering
 • Inter-Symbol Interference (ISI)

• Multiple Carrier Distortion
 – Intermodulation Products
 • Adjacent Channel Interference (ACI)
On-board Multiple Carrier Amplification

- Payload Hardware/Mass saving
- Flexibility
- Strong ACI due to intermodulation products
- Strong ISI at the transponder edge
- High penalty in power efficiency (OBO)

On-ground mitigation techniques enabling high spectral and power efficiency
Predistortion

• Data Predistortion:
 – Operating on the modulated symbols
 – Based on polynomial or Look-Up Table
 – ISI and ACI pre-cancelling

\[
x(n) = f(u(n), \ldots, u(n-K))
\]

• Signal Predistortion:
 – Operating on the waveform
 – Based on polynomial or Look-Up Table
 – An attempt to invert the channel function

\[
z(nT_o) = f(s(nT_o), s((n-1)T_o), \ldots, s((n-K)T_o))
\]
Equalization

• Single Carrier Fractionally Spaced Equalization:
 - Processing multiple samples per symbol
 - Improve tolerance to sampling error
 - ISI cancellation
 - Centroids decoding to improve performance

• Multiple Carrier Equalization:
 - Joint processing at receiver
 - Based on polynomial function and filter
 - Performs an MMSE cancellation of ISI and ACI
Case Study: Data Predistortion

- Modelling the non-linear channel
 - Channel: Feeder link, Satellite transponder, downlink
 - Focus on AWGN downlink, ideal feeder link
 - Identifying the parameters of the channel
 - Mechanism for their identification

- Modelling the predistorter

- Methodology for parameter identification
 - Direct
 - Indirect

- Performance Assessment

Channel Modelling for Data Predistortion

- Third order Volterra baseband model

\[y(n) = \sum_{k=0}^{K} h_p^{(1)}(k) x(n - k) + \sum_{k_1,k_2,k_3} h_{k_1,k_2,k_3}^{(3)} (k_1, k_2, k_3) x(n - k_1) x(n - k_2) x(n - k_3)^* + \eta(n) \]

- Multicarrier signal

\[x(n) = \sum_{m=0}^{M-1} u_m(n) e^{-j[2\pi m(\Delta f) + \varphi_m]} \]

- Baseband model for carrier \(m \)

\[y_m(n) = \sum_{p} \sum_{k=0}^{K} h_p^{(1)}(k) u_p(n - k) + \sum_{(p_1,p_2,p_3)\in \Omega_{m,3}} \sum_{k_j} h_{p_1,p_2,p_3,m}^{(3)} (k_1, k_2, k_3) u_{p_1}(n - k_1) u_{p_2}(n - k_2) u_{p_3}(n - k_3)^* e^{2\pi(f_{p_1} + f_{p_2} - f_{p_3} - f_m) n T_s} + \eta_m(n) \]
Parameters for identification
- Memory depth: K
- Coefficients: $h_{p,m}^{(1)}(k)$, $h_{p_1,p_2,p_3,m}^{(3)}(k_1, k_2, k_3)$

Output linear in coefficients
- Standard Linear Least Squares

Low complexity model: Memory polynomials

\[
y_m(n) = \sum_p \sum_{k=0}^K h_{p,m}^{(1)}(k)u_p(n - k) + \\
+ \sum_{(p_1,p_2,p_3) \in \Omega_{m,3}} \sum_k^K h_{p_1,p_2,p_3,m}^{(3)}(k)u_{p_1}(n - k)u_{p_2}(n - k_2)u_{p_3}(n - k) e^{2\pi(f_{p_1} + f_{p_2} - f_{p_3} - f_m)nT_s} + \eta_m(n)
\]
Intermodulation Analysis

- Third degree terms analysis:
 \[\Delta f_m \triangleq f_{p_1} + f_{p_2} - f_{p_3} - f_m \]

- In-band distortion intermodulation terms
 \[\Delta f_m = 0 \]

- Example:
 - Three equally spaced carriers
Predistortion Model

• Memory Polynomial Multicarrier Model:
 – Less complex than full Volterra
 – Linear in the parameters

\[
\phi_{m_1,...,m_d}(u(n)) = \prod_{j=1}^{(d+1)/2} u_{m_j}(n) \prod_{j=(d+1)/2+1}^{d} u^*_m(n)
\]

\[
x_m(n) = \sum_{d=1}^{D_d} \sum_{(m_1,...,m_d) \in \Omega_{m,d}} \sum_{k=0}^{K_d} w_{m_1,...,m_d,m(k)} \phi_{n_1,...,m_d}(u(n-k))
\]

\[
x_m(n) = \mathbf{w}_m^T \phi_m(u(n))
\]

• Parameters Estimation \(\mathbf{w}_m = [\{w_{m_1,...,m_d,m(k)}\}] \):
 – Indirect Estimation
 – Direct Estimation
Indirect Estimation

• Idea: Pre inverse is same as post inverse

• General Characteristics:
 – The predistorter is estimated as a MMSE equalizer
 – Low complexity derivation and implementation
 – Receiver noise is in input to the predistortion during estimation

• The Optimization Problem:
 – Cost Minimization:

\[
\min E\{|u(n) - \tilde{u}(n)|^2\}
\]
Standard Multiple Carrier Indirect Estimation Method

- **Standard Indirect Estimation:**
 - It can be reduced to standard LS
 - Channel Inverse Estimation:
 - Model input $z(n)$
 - Desired model output $v(n)$

$$v_m(n) \approx \Phi_m^T(z(n))w_m$$

$$v_m = [v_m(1) \ldots v_m(N)]^T$$

$$\Phi_m = \begin{bmatrix}
\Phi_m^T(z(0)) \\
\vdots \\
\Phi_m^T(z(N))
\end{bmatrix}$$

$$w_m = (\Phi_m^H \Phi_m)^{-1} \Phi_m^H v_m$$
Direct Estimation

• General Characteristics
 – Directly targets minimization of interference at RX
 – High complexity derivation and implementation

• The Optimization problem
 – Cost minimization

\[\min E\{||u(n) - y(n)||^2\} \]
Multiple Carrier Predistortion based on Direct Estimation/Learning

• Possible Optimization Approaches:

<table>
<thead>
<tr>
<th>Individual Cost Function</th>
<th>Joint Cost Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E{C(w_m(n))}$ with $C(w_m(n)) =</td>
<td>e_m(n)</td>
</tr>
</tbody>
</table>

Least Mean Squares (LMS)
Recursive Least Square (RLS)

Error Definition:
$e_m(n) = u_m(n) - y_m(n)$
Direct Estimation Joint RLS

- M carriers: Single optimization problem:
 - Error: \(e_m(n) = u_m(n) - y_m(n) \)
 - Carrier Cost function minimized w.r.t
 \[
 C(w) = \sum_{j=1}^{M} \sum_{i=1}^{n} \lambda^{n-i} |e_j(i)|^2
 \]
 where \(w = [w_1^T, \ldots, w_M^T]^T \)
 - First Order Minimization
 \[
 \frac{\partial C(w)}{\partial w(n)} = -2 \sum_{j=1}^{M} \sum_{i=1}^{n} \lambda^{n-i} e_j(i)^* \frac{\partial y_j(i)}{\partial w(n)} = 0
 \]
Functional Scheme of the Joint Direct Estimation Method
Step by Step Derivation

\[
e(n) = [e_1(n), \ldots, e_M(n)]^T
\]

\[
\frac{\partial y(i)}{\partial w(n)} = \begin{bmatrix}
\frac{\partial y_1(i)}{\partial w(n)} & \cdots & \frac{\partial y_M(i)}{\partial w(n)}
\end{bmatrix}
\]

\[-2 \sum_{i=1}^{n} \lambda^{n-i} \frac{\partial y(i)}{\partial w(n)} e^*(i) = 0\]

\[
\frac{\partial y_m(n)}{\partial w(n)} = \begin{bmatrix}
\frac{\partial y_m(n)}{\partial w_1(n)} & \cdots & \frac{\partial y_m(n)}{\partial w_M(n)}
\end{bmatrix}^T
\]

\[
\frac{\partial y_m(n)}{\partial w_j(n)} = \sum_{l=-K}^{K} \tilde{h}_{m,j}(n, l) \frac{\partial x_j(n-l)}{\partial w_j(n)}
\]

\[
\tilde{h}_{m,j}(n, l) = \frac{\partial y_m(n)}{\partial x_j(n-l)}
\]

\[
\frac{\partial x_j(n-l)}{\partial w_j(n)} \approx \phi_m(u(n-l))
\]

\[
\frac{\partial y_m(n)}{\partial w_j(n)} = \sum_{l=-K}^{K} \tilde{h}_{m,j}(n, l) \phi_m(u(n-l))
\]
Recursive Algorithm Definition

\[\mathbf{R}(n)w(n) = r(n), \]

\[\mathbf{R}(n) = \sum_{i=1}^{n} \lambda^{n-i} \left[\frac{\partial y(i)}{\partial w(n)} \right]^* \left[\frac{\partial y(i)}{\partial w(n)} \right]^T \]

\[r(n) = \sum_{i=1}^{n} \lambda^{n-i} \left[\frac{\partial y(i)}{\partial w(n)} \right]^* u(i) \]

\[w(n+1) = w(n) + \mu \mathbf{K}(n)e(n), \]

\[\mathbf{K}(n) = \lambda^{-1} \mathbf{P}(n-1) \frac{\partial y(n)}{\partial w(n)} \times \]

\[(\mathbf{I} + \lambda^{-1} \left[\frac{\partial y(n)}{\partial w(n)} \right]^H \mathbf{P}(n-1) \frac{\partial y(n)}{\partial w(n)}^{-1}, \]

\[\mathbf{P}(n) = \lambda^{-1} (\mathbf{P}(n-1) - \mathbf{K}(n) \left[\frac{\partial y(n)}{\partial w(n)} \right]^H \mathbf{P}(n-1)). \]
Performance Results

- **Figure of Merit:**

 \[TD_{BER} = \frac{E_s}{N_0}|_{NL} - \frac{E_s}{N_0}|_{AWGN} + OBO \]

- Internal and External carrier: Three equally spaced carriers, 36 MHz transponder, Rate=8 Mbaud, Mod=16APSK, Code Rate=2/3

- Take away
 - Good Performance Gain
 - Use in future wideband systems
Sensitivity to Noise

- Direct estimation is robust to receiver noise

- Three equally spaced carriers, 36 MHz transponder, Rate=8 Mbaud, Mod=16APSK, Code Rate=2/3, OBO=1.7dB

- Take away
 - Stable adaptive algorithm
Related Works

• **Successive Predistortion**
 – Successively modifies the transmitted symbols to reduce multicarrier distortion
 – Exploits channel model
 – Refs: [12], [14]

• **Extension to distributed predistortion**
 – Different carriers uploaded by different Gateway
 – Limited data exchange between Gateways
 – Refs: [16]

• **Use of non-linear equalization on the return link**
 – Single carrier predistortion for users
 – Multicarrier equalization (+ decoding) at Gateway
 – Refs: [24]

• **Use in Time-Frequency packing**
 – Faster than Nyquist
 – Refs: [15]
Multicarrier Predistortion in Industry

• Traditional approach: high OBO, high carrier spacing
 – Multicarrier predistortion studies for improving OBO, carrier spacing

• Two European Space Agency projects

• Study Phase project: On-ground multi-carrier digital equalization/pre-distortion techniques for single or multi gateway applications
 – Partners: TZR (Germany), KTH (Sweden), Uni Lu, SES (Luxembourg)
 – Data Predistortion, Equalization
 – Completed: December 2013
 – Conclusions
 • Predistortion/Equalization provides gains from simulations
 • Next Step: Prototyping, Satellite Demonstration

• Implementation project: Prototyping and Testing of Efficient Multicarrier Transmission for Broadband Satellite Communications
 – Partners: Newtec (Belgium), Airbus D&S (France), Uni Lu, SES (Luxembourg)
 – Over the satellite demonstration
 • Different predistortion algorithms explored
 – Ongoing, planned completion: December 2016
References

Contributions by the group

Study Case 2: Linear interference caused by Frequency Reuse
Multibeam Satellite Systems

- Multiple antennas (feeds) at the satellite
 - Single antenna receivers
- User downlink: Multiuser-MIMO
 - Similar to cellular?
Multibeam Satellite Systems

- K users and N antennas
 - One antenna per beam
 - Specific radiation pattern on ground
 - Gain reduces with offset from beam centre
- B: Beam Gain matrix of dimension $K \times N$
 - $B(i, j)$: Gain from antenna j to user i
 - Dependent on user location
- Channel from antenna j to user i
 - $h(i, j) = B(i, j)\hat{h}(i, j)$
 - h_i: $1 \times N$ channel vector to user i
 - $H = [h_1^T, h_2^T, ..., h_K^T]^T$: $K \times N$ MU-MIMO channel
Aggressive Frequency Reuse

- Shannon formula: \(C = f \cdot \log(1 + SINR) \)
- Aggressive frequency reuse: ↑ \(f \) per user, but ↓ \(SINR \)
- Can SINR be improved by processing?

Today: Viasat1, 110Gbps Spectrally efficient, next gen satcoms: “Terabit Satellite: A myth or reality?”
Precoding

• Joint encoding of co-frequency signals
 – Minimize the mutual interference between co-channel beams

• Linear Precoding options:
 – Zero-Forcing (ZF)
 – Regularized Channel Inversion (MMSE)

• Non-Linear Precoding options
 – Tomlinshon-Harashima
 – Dirty Paper Coding

• Precoding @ beam space vs. Precoding @ feed space

\[y = H W s + n \]

\[W : \text{Precoder} \]
Figure of Merit

<table>
<thead>
<tr>
<th>Equation</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINR of user $i \in [1, K]$</td>
<td>$\gamma_i = \frac{</td>
</tr>
<tr>
<td>Rate of user $i \in [1, K]$</td>
<td>$R_i = \log(1 + \gamma_i)$</td>
</tr>
<tr>
<td>Total power</td>
<td>$P = \sum_{i=1}^{K}</td>
</tr>
<tr>
<td>Power at antenna $i \in [1, N]$</td>
<td>$\phi_i = \sum_{j=1}^{K} w_j w_j^H \left</td>
</tr>
</tbody>
</table>
Classical optimization problems

<table>
<thead>
<tr>
<th>Optimization</th>
<th>Constraint</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>max min (\frac{\gamma_i}{\Gamma_i}), (\sum)</td>
<td>Sum power constraint</td>
<td>Max min fairness problem Feasibility problem (\rightarrow) Bisection</td>
</tr>
<tr>
<td>max min (\frac{R_i}{F_i})</td>
<td>Sum power constraint</td>
<td>Rate Balancing problem</td>
</tr>
<tr>
<td>min (P)</td>
<td>SINR Constraints</td>
<td>Semi-definite relaxation and Gaussian Randomization</td>
</tr>
<tr>
<td>(\sum R_k)</td>
<td>Per antenna power constraint</td>
<td>Sum Rate maximization</td>
</tr>
<tr>
<td></td>
<td>Sum power constraint</td>
<td>Sub-gradient optimization</td>
</tr>
</tbody>
</table>
Frame-based Precoding

- Data from multiple users multiplexed on a single FEC frame
 - Long lengths of FEC
- Difficult to have multiple precoders per frame
 - Overhead
- How to devise one precoder per frame?
 - [REF 9] posed it as PHY Multigroup, multicast
Multigroup Multicasting

Related Problem
- PHY multicasting to multiple groups
- G groups, each group receives same info
- Formation of such groups \rightarrow user scheduling

In SatComs, each antenna is driven by a dedicated RF Chain
Problem Formulation

- w_l precoder for all users in group G_l
- Less precoders than users
- SINR of user $i \in G_m$

$$\gamma_i = \frac{|h_i^H w_m|^2}{\sum_{j \neq m} |h_i^H w_j|^2 + N_0}$$

- Optimization problems presented earlier can be recast
 - SDR, Gaussian randomization [REFs 7, 9]
Fairness under Per Antenna Constraint

Average user throughput versus the number of users per group (left) and SINR distribution over the coverage (right)

5 Transmit antennas, 4 users [REF 7]

SR: Sum Rate, SRA: Sum Rate with availability constraint, SRM: MODCOD constrained Sum rate with PAC
Non-convex QCQP approach

• Optimization problem

\[
\min \sum_{m=1}^{G} \|w_m\|^2 \\
\text{s.t. } \gamma_i \geq \Gamma_i
\]

• NP-hard

• Recast as non-convex Quadratically Constrained Quadratic Program

\[
P: \min_{x \in \mathbb{C}^N} x^H A_0 x \\
\text{s.t. } x^H A_i x \leq c_i, \quad \forall i \in [M],
\]

• Sub-optimal solution obtained after penalized reformulation [REF 13]

Faster and efficient than SDR
Impact on SatCom Ecosystem

- At least two European Space Agency projects
- Study Phase projects: SatNEx III, Next Generation Waveforms for improved spectral efficiency
 - Partners: Multiple universities from
 - Beamforming and precoding
 - Conclusions
 - Modelling, Identification and Estimation of parameters
 - Significant gain from simulations

- Software Demonstrator project: Precoding Demonstrator for broadband system forward links
 - Partners: DLR (German Aerospace Agency), Fraunhofer, Uni Lu, SES (Luxembourg)
 - Software demonstration of gains from precoding in a system wide environment
 - Ongoing, planned completion: December 2016
Related Work: Symbol Level Precoding

- Symbol level precoding
 - Precoding dependent on channel as well as symbols
 - [REFS 6, 8, 10, 11, 12]

- Additional degrees of freedom
 - Exploit interference
 - Higher complexity

- Constellation ζ comprising symbols d_k

$$ w_k(d_j, H, \zeta) = \arg \min_{w_1, \ldots, w_K} \| \sum_{k=1}^{K} w_k d_k \|^2 $$

s.t.
$$ \left\{ \begin{array}{l}
C1 : \angle(h_j \sum_{k=1}^{K} w_k d_k) = \angle(d_j), \forall j \in K \\
C2 : \| h_j \sum_{k=1}^{K} w_k d_k \|^2 \geq \sigma^2 \zeta_j, \forall j \in K
\end{array} \right. $$
Symbol Level Precoding: Representative Result 2 antennas, 2 users

CIPM: Symbol level precoding
OB: Optimal unicast channel
Symbol Level Precoding: Representative Result (16 QAM, target SNR 11.76 dB)

Frame-level Transmit Power [dBW]

System Size $K = M$

CIPM: Symbol level precoding
OB: Optimal unicast channel

Contribution from the group

Other Transceiver techniques
Transmission and Reception Technologies

- Interference detection and localization
- Multi-user detection
- Multi-input, multi-output systems
- Precoding + Predistortion
Resource Allocation for Cognitive Satellite Communications

Thanks to SnT Team Members: E. Lagunas, S.K. Sharma, S. Chatzinotas and B. Ottersten

Presenter: Sina Maleki
sina.maleki@uni.lu

Interdisciplinary Centre for Security, Reliability and Trust (SnT)
University of Luxembourg
Recap of Motivation

Why Cognitive Satellite Communication in Ka Band?
- The satellite communications data traffic is increasing
 - Access to broadband services above 100 Mb/s by 2020, at least 50% of households in Europe.
 - Access to at least 30 Mb/s data rate By 2020, the whole population in Europe.
 - 5 to 10 million households will choose satellite broadband communication by 2020.
- Ka band is the appropriate spectrum for high data rate services.
- Challenge: only 500 MHz of exclusive bandwidth for FSS!
- Possible solution: Cognitive Radio!

An example of satellite broadband systems. Courtesy: SES ASTRA2Connect
Recap of Scenarios

- The most appropriate scenarios in terms of technology, regulations, standardization, and market assessments:
 - Scenario A: cognitive FSS downlink communication in the band 17.3-17.7 GHz where incumbent users are BSS feeder links.
 - Scenario B: cognitive FSS downlink communication in the band 17.7-19.7 GHz where the incumbent users are FS microwave links (terrestrial).
 - Scenario C: Cognitive FSS uplink communication in the band 27.5-19.5 GHz where the incumbent users are FS microwave links (terrestrial).
Scenario A

- 17.3-17.7 GHz
- Incumbent users: BSS feeder links

- No interference from the cognitive FSS to the incumbent BSS.
- FSS terminals may receive interference from BSS feeders.
- Cognitive downlink communication is possible provided that the received interference is not harmful.
- Challenge: BSS interference needs to be measured!
Scenario B

- 17.7-19.7 GHz
- Incumbent users: FS microwave links

- No interference from the cognitive FSS transmitter to the incumbent FS receiver due to power flux density restrictions.
- FSS terminals may receive interference from FS links.
- Cognitive downlink communication is possible provided that the received interference is not harmful.
- Challenge: FS interference needs to be measured!
Scenario C

- 27.5-29.5 GHz
- Incumbent users: FS microwave links

- Cognitive uplink communication is possible provided that the operation of FSS does not interfere with FS.
- FSS terminals may interfere with the FS links: multiple interferers.
- In case of no database, the receivers need to be detected.
- Challenge: FSS interference towards FS links needs to be mitigated by cognitive radio techniques.
Selected Group Outputs

Joint Carrier Allocation and Beamforming for Cognitive SatComs in Ka-band: Scenario A

Reference: ICC 2015
Proposed Cognitive Exploitation Framework

- **Underlay CR approach**
 - Carrier Assignment (CA) and Beamforming (BF)
Representative Beam

- 150 Km radius with its center located in Betzdorf, Luxembourg (49.6833° N and 6.35° E)

- **Black** lines: azimuthal directions of the FSS terminals with respect to the GEO FSS satellite located at 25 ° E

- **Red** lines: azimuthal directions of the BSS feeder links from Betzdorf, Luxembourg (49.6833° N and 6.35° E)

- **21 BSS feeder links** (carriers) towards **five different satellites** (Thanks to SES, Luxembourg)
Interference Analysis

- Received signal level at the mth FSS terminal from link analysis of the FSS system
 \[P_{r,m} = P_{t_{\text{fss}}}G_{\text{ter}}(0)FL_{\text{fss}}(m)B(m,k) \]
 \[B(m,k) = G_{\text{max}} \left(\frac{I_1(u(m,k))}{2u(m,k)} + 36 \frac{I_3(u(m,k))}{u(m,k)^3} \right)^2 \]

- Interference level received at the mth FSS terminal
 \[I_{r,m}(m) = P_{t_{\text{bss}}}G_{t_{\text{bss}}}G_{T}(\theta_{\text{off}1})G_{T}(\theta_{\text{off}2})FL_{\text{bss-fss}}(m) \]

- SINR at the FSS terminal due to a single BSS interfering feeder link (carrier)
 \[\text{SINR} = \frac{P_{t_{\text{fss}}}G_{\text{ter}}(0)B(m,k)(\frac{c}{4\pi D(m) f_c})^2}{P_{t_{\text{bss}}}G_{t_{\text{bss}}}G_{T}(\theta_{\text{off}1})G_{T}(\theta_{\text{off}2}) \left(\frac{c}{4\pi d(m) f_c} \right)^2 + I_{\text{co}} + N_0} \]

- Carrier bandwidth for both victim FSS and interfering BSS links are assumed to be 36 MHz.

- Aggregate interference calculation: summing all the contributions from interfering BSS carriers
Applied Techniques: Beamforming

- A **receive beamformer** at the FSS terminal in order to mitigate interference coming from BSS feeder links
 - **DoA** information calculated from available database
- Important aspects of **beamforming design**
 - Array geometry or antenna structure
 - Weight design

Antenna Structure
- A terminal reflector based feed array (**Multiple Input LNB (MLNB)**) set up) system with 75 cm reflector diameter (f/D=0.6)
- 3 feeds that are aligned along the feed array horizontal line
 - Out of these 3 LNBs, two side feeds are offset at 2 degrees (1.91 cm) from the centered beam and are symmetrical.
 - **Array response vector** calculated using **GRASP** software

BF Weight Design
- LCMV beamformer \[w = R_y^{-1}C(C^H R_y^{-1}C)^{-1}g \]
 - BF applied only in the FSS terminals which receive harmful interference (below a certain threshold defined based on **modcod adaptation** of the terminal)
Applied Techniques: Carrier Allocation

- **Carrier assignment matrix**

 \[A = \begin{bmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{M1} & \cdots & a_{MN} \end{bmatrix}, \quad a_{ij} \in \{0, 1\} \]
 \[\sum_{i=1}^{M} a_{ij} = 1 \]

- **SINR matrix**

 \[\text{SINR} = \begin{bmatrix} \text{SINR}_{11} & \cdots & \text{SINR}_{1N} \\ \vdots & \ddots & \vdots \\ \text{SINR}_{M1} & \cdots & \text{SINR}_{MN} \end{bmatrix} \]

- **CA problem** to maximize the overall throughput of the system

 \[
 \max_{A} \| \text{vec}(A \odot R(\text{SINR})) \|_1 \\
 \text{subject to } \|A_j\|_1 = 1,
 \]

- **Hungarian Method**

Numerical Results

Simulation and link budget parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier bandwidth</td>
<td>36 MHz</td>
</tr>
<tr>
<td>Shared band</td>
<td>17.3 GHz to 18.1 GHz</td>
</tr>
<tr>
<td>Exclusive band</td>
<td>19.7-20.2 GHz</td>
</tr>
</tbody>
</table>

Parameters for FSS system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite orbital position</td>
<td>25° E</td>
</tr>
<tr>
<td>Satellite EIRP</td>
<td>61 dBW</td>
</tr>
<tr>
<td>Terminal Gain</td>
<td>42.1 dBi</td>
</tr>
<tr>
<td>Antenna pattern of FSS terminal</td>
<td>ITU-R S.465</td>
</tr>
<tr>
<td>FSS receiver noise temp.</td>
<td>262 K</td>
</tr>
<tr>
<td>Noise power</td>
<td>-128.8552 dBW@36MHz</td>
</tr>
<tr>
<td>Co-channel margin</td>
<td>-13 dBW</td>
</tr>
<tr>
<td>Reuse pattern</td>
<td>4 color (freq./pol.)</td>
</tr>
<tr>
<td>Channel</td>
<td>LoS channel (path loss+beamgain matrix)</td>
</tr>
<tr>
<td>Satellite height</td>
<td>35786 km</td>
</tr>
</tbody>
</table>

Parameters for BSS Feeder Station

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit power</td>
<td>19 dBW</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>62 dBi@17.7 GHz</td>
</tr>
<tr>
<td>Antenna pattern</td>
<td>ITU RR Appendix 7</td>
</tr>
<tr>
<td>Location</td>
<td>49.6833° N, 6.35° E</td>
</tr>
<tr>
<td>Number of BSS carriers</td>
<td>21</td>
</tr>
</tbody>
</table>
Numerical Results

Per beam throughput comparison of various cases

<table>
<thead>
<tr>
<th>Cases</th>
<th>Value (Gbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusive only w/ CA (Case 1)</td>
<td>0.761</td>
</tr>
<tr>
<td>Shared plus Exclusive w/o BSS int. w/ CA (Case 2)</td>
<td>2.0006</td>
</tr>
<tr>
<td>Shared plus Exclusive w/ BSS int. w/o CA (Subcase 31)</td>
<td>1.8357</td>
</tr>
<tr>
<td>Shared plus Exclusive w/ BSS int. w/ CA (Subcase 32)</td>
<td>1.9916</td>
</tr>
<tr>
<td>Shared plus Exclusive w/ BSS int. w/ CA+BF (Subcase 33)</td>
<td>2.1388</td>
</tr>
</tbody>
</table>

Comparison of cases

<table>
<thead>
<tr>
<th>Improve case</th>
<th>Improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement of Subcase 32 over Subcase 31</td>
<td>8.49 %</td>
</tr>
<tr>
<td>Improvement of Subcase 32 over Case 1</td>
<td>161.70 %</td>
</tr>
<tr>
<td>Improvement of Subcase 33 over Case 1</td>
<td>181.05 %</td>
</tr>
<tr>
<td>Improvement due to BF w. r. t. Case 1</td>
<td>19.35 %</td>
</tr>
</tbody>
</table>

- **Case 1: exclusive only**
 - Conventional system without the use of shared carriers.

- **Case 2: shared plus exclusive** without BSS interference
 - This case does not exist in practice but considered for the comparison purpose.

- **Case 3: Shared plus Exclusive with BSS interference**
 - FSS systems share 17.3 – 18.1 GHz band, primarily allocated to the BSS system.
Numerical Results

Main Observations

- SINR distribution degrades in the presence of the BSS interference.
- In the presence of BSS interference, almost 10% users have SINR less than 6 dB and about 5% users have SINR less than 0 dB.
- Beam availability significantly improves while employing the BF.
Main Observations

- By employing CA, beam availability w/ BSS interference approaches the availability that would be obtained w/o BSS interference.

- The minimum rate increases from 0.567 to 2.37 bps/Hz while employing CA scheme.

- BF approach provides more than 3.5 bps/Hz to almost 8% users i.e., it allows these users to use higher modcod than in the other cases.
Resource Allocation for Cognitive Satellite Communications in Ka-band: Scenario B

Scenario and Problem Description (Recap)

- **Spectral coexistence** of FSS downlink with FS microwave links in **17.7–19.7 GHz**
 - FS microwave link (incumbent)
 - GEO FSS downlink (cognitive)

- **Interference from cognitive satellite to FS receivers is negligible** due to the limitation in the maximum EIRP density of current Ka band satellite systems

- **Main interfering link**: from FS Tx to the cognitive FSS terminal

Cognitive Exploitation Framework

- Underlay CR approach
 - Carrier Assignment (CA) and Beamforming (BF)
Interference Analysis

- **L** FSS terminals and **N** FS stations

\[
P_{r,m} = P_{t\text{fss}} G_{\text{ter}}(0) F L_{\text{fss}}(m) B(m, k)
\]

- **Aggregate interference** from **N** FS microwave stations received at the \(l\)th FSS terminal at the frequency of \(f_m\)

\[
I_l(m) = \sum_{n=1}^{N} I_l(n, m)
\]

\[
I_l(n, m) = P_{\text{FS}}^{\text{FS}}(n) \cdot G_{\text{FS}}^{\text{FS}}(n, \theta_{n,l}) \cdot G_{\text{Rx}}^{\text{FSS}}(\theta_{l,n}) \cdot L(d_{n,l}, f_m)
\]

- Free space propagation model: **worst case** scenario

- Received signal level at the \(l\)th FSS terminal from **link analysis** of the FSS system

\[
P_{\text{Rx}}(l) = P_{\text{Tx}}^{\text{SAT}} \cdot G_{\text{Tx}}^{\text{SAT}}(l) \cdot G_{\text{Rx}}^{\text{FSS}}(0) \cdot L(D, f_m)
\]

- **SINR** at the FSS terminal

\[
\text{SINR}(m, l) = \frac{P_{\text{Rx}}(l)}{I_l(m) + I_{\text{co}} + N_0}
\]

- In case of asymmetry of **carrier bandwidths of FS and FSS systems**, compensation factor

\[
B_{\text{overlap}} / B_{\text{FSS}}
\]
Applied Techniques: Beamforming

- A **receive beamformer** at the FSS terminal in order to mitigate interference coming from FS links
 - **DoA** information calculated from available database

- Important aspects of **beamforming design**
 - Array geometry or antenna structure
 - Weight design

- **Antenna Structure**
 - A terminal reflector based feed array (**Multiple Input LNB (MLNB)** set up) system with 75 cm reflector diameter \((f/D=0.6)\)
 - 3 feeds that are aligned along the feed array horizontal line
 - Out of these 3 LNBs, two side feeds are offset at 2 degrees \((1.91\, \text{cm})\) from the centered beam and are symmetrical.
 - **Array response vector** calculated using **GRASP** software

- **BF Weight Design**
 - **LCMV beamformer**
 \[
 w = R_y^{-1}C(C^HR_y^{-1}C)^{-1}g
 \]
 - BF applied **only in the FSS terminals which receive harmful interference** (below a certain threshold defined based on **modcod adaptation** of the terminal)
Applied Techniques: Carrier Allocation

- **Carrier assignment matrix**
 \[
 A = \begin{bmatrix}
 a_{11} & \cdots & a_{1N} \\
 \vdots & \ddots & \vdots \\
 a_{M1} & \cdots & a_{MN}
 \end{bmatrix}
 \quad a_{ij} \in \{0, 1\}
 \quad \sum_{i=1}^{M} a_{ij} = 1
 \]

- **SINR matrix**
 \[
 \text{SINR} = \begin{bmatrix}
 \text{SINR}_{11} & \cdots & \text{SINR}_{1N} \\
 \vdots & \ddots & \vdots \\
 \text{SINR}_{M1} & \cdots & \text{SINR}_{MN}
 \end{bmatrix}
 \]

- **CA problem to maximize the overall throughput of the system**
 \[
 \max_A \| \text{vec}(A \odot R(\text{SINR})) \|_1
 \]
 subject to \(\|A_j\|_1 = 1 \),

- **Hungarian Method**

Numerical Results

Simulation parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier bandwidth</td>
<td>36 MHz</td>
</tr>
<tr>
<td>Shared band</td>
<td>17.7 – 19.7 GHz (55 carriers)</td>
</tr>
<tr>
<td>Exclusive band</td>
<td>19.7 – 20.2 GHz (14 carriers)</td>
</tr>
</tbody>
</table>

Parameters for FSS system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite location</td>
<td>28.2°E</td>
</tr>
<tr>
<td>$P_{\text{SAT}}^{\text{Tx}}$</td>
<td>7 dBW</td>
</tr>
<tr>
<td>$G_{\text{SAT}}^{\text{Tx}} (l)$</td>
<td>Between 49.60 and 54.63 dBi</td>
</tr>
<tr>
<td>Co-channel margin</td>
<td>Between −7.37 and −14.16 dB</td>
</tr>
<tr>
<td>Reuse pattern</td>
<td>4 color (freq./pol.)</td>
</tr>
<tr>
<td>Channel</td>
<td>LoS channel (path loss and beamgain)</td>
</tr>
<tr>
<td>Satellite height</td>
<td>35,786 Km</td>
</tr>
<tr>
<td>FSS terminal antenna max. gain</td>
<td>42.1 dBi</td>
</tr>
<tr>
<td>FSS terminal antenna pattern</td>
<td>ITU-R S.465</td>
</tr>
<tr>
<td>Receiver noise temperature</td>
<td>262 K</td>
</tr>
<tr>
<td>Noise power</td>
<td>$-128.86 \text{ dBW} @ 36 \text{ MHz}$</td>
</tr>
<tr>
<td>Terminal height</td>
<td>2 m</td>
</tr>
<tr>
<td>Terminal altitude above the sea level</td>
<td>From terrain data available online</td>
</tr>
<tr>
<td>LNBs at the terminal</td>
<td>3</td>
</tr>
</tbody>
</table>

Parameters for FS system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna pattern</td>
<td>From Database</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>ITU-R F.1245-2</td>
</tr>
<tr>
<td>EIRP</td>
<td>Between 5.3 – 41 dBi</td>
</tr>
<tr>
<td>Antenna height</td>
<td>Between 32.9 – 54.3 dBW</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Between 0 – 187 m</td>
</tr>
<tr>
<td></td>
<td>Between 13.7 – 55 MHz</td>
</tr>
</tbody>
</table>
Numerical Results

- Parameters about FS links are obtained via **ITU-R BR IFIC database**.
- Population density database from **NASA SEDAC**.
- **FS distribution over France**
Numerical Results

- **Beam pattern of FSS satellite over Marseille**

- **CDF of SINR distribution**

- **SINR distribution degrades** in the presence of FS interference.

- Only **1.2% of FSS terminals** experience **SINR below 10dB** in an interference-free scenario, which increases **up to 60%** in the FSS-FS coexistence case.
Numerical Results

Per beam throughput comparison of various cases

<table>
<thead>
<tr>
<th>Case</th>
<th>Technique</th>
<th>Value (Gbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1: Exclusive only</td>
<td>w/o CA</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>w/ CA</td>
<td>0.79</td>
</tr>
<tr>
<td>Case 2: Shared+Excl. w/o FS inter.</td>
<td>w/o CA</td>
<td>3.80</td>
</tr>
<tr>
<td></td>
<td>w/ CA</td>
<td>4.20</td>
</tr>
<tr>
<td>Case 3: Shared+Excl. w/ FS inter.</td>
<td>w/o CA</td>
<td>3.09</td>
</tr>
<tr>
<td></td>
<td>w/ CA</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td>w/ CA+BF</td>
<td>5.24</td>
</tr>
</tbody>
</table>

- Case 1: exclusive only
- Case 2: shared plus exclusive without FS interference
- Case 3: shared plus exclusive with FS interference

- 445.45 % throughput improvement with shared+exclusive (CA) w.r.t. the exclusive only case
- 580.5% throughput improvement with shared+exclusive (CA+BF) w.r.t. the exclusive only case
Main Observations

- **Beam availability in the presence of the FS interference improves** while employing the proposed schemes.
- **Minimum user rate** in the cognitive scenario (Case 3) increases from 0 to **2.75 bps/Hz** while employing the CA.
Resource Allocation for Cognitive Satellite Uplink Communications in Ka-band: Scenario C

Considered Scenario:

Band: 27.5 – 29.5 GHz
Incumbent User: FS links
Cognitive Satellite Uplink is one of the three promising scenarios. This scenario falls within the underlay CR paradigm. Many works on general interference channels have been performed. Satellite-terrestrial co-existence, in contrast, have not received much attention in the literature.}

No interference at the Satellite!

The applicability of CR in the aforementioned scenario was discussed in [2-3]. Here, we go a step further, and consider designing efficient resource allocation algorithms for this scenario.

Joint Power and Carrier Allocation (JPCA)
Joint Power and Carrier Allocation (JPCA)

The cross-channel gain matrix is obtained from the DATABASE

\[
G(m) = \begin{bmatrix}
g_{1,1}(m) & \cdots & g_{1,N}(m) \\
\vdots & \ddots & \vdots \\
g_{L,1}(m) & \cdots & g_{L,N}(m)
\end{bmatrix}
\]

\[
g_{i,n}(m) = G_{\text{Tx}}^{\text{FSS}}(\theta_{i,n}) \cdot G_{\text{Rx}}^{\text{FS}}(n, \theta_{n,t}) \cdot L(d_{i,n}, f_m)
\]

where,
- \(G_{\text{Tx}}^{\text{FSS}}(\theta)\): Gain of the FSS transmitting antenna at offset angle \(\theta\).
- \(\theta_{i,j}\): Offset angle (from the boresight direction) of the \(i\)-th station in the direction of the \(j\)-th station.
- \(G_{\text{Rx}}^{\text{FS}}(n, \theta)\): Gain of the \(n\)-th FS station antenna at offset angle \(\theta\).
- \(L(d, f) = \left(\frac{c}{4\pi df}\right)^2\): Free space path loss with \(d\) being the transmitter-receiver distance and \(f\) being the carrier frequency.
- \(d_{i,j}\): Distance between the \(i\)-th transmitter and the \(j\)-th receiver.
Joint Power and Carrier Allocation (JPCA)

Identification of the worst FS station in terms of interference consists in determining the one with maximum cross-channel gain.

\[n_w(m, l) = \max_n \left[G(m) \right]_l \]

\[l\text{-th row of matrix } G(m) \]
Joint Power and Carrier Allocation (JPCA)

The interference limit of the worst FS receiver, namely $I_{\text{thr}, n_w(m,l)} [W]$, is divided into different portions according to the maximum number of FSS users that can potentially interfere with it:

$$I_w(m, l) = I_{\text{thr}, n_w(m,l)} \left(\frac{B_{\text{FS}}}{B_{\text{FSS}}} \right)^{-1}$$
Joint Power and Carrier Allocation (JPCA)

Therefore, the transmit power limit is established to ensure that the following individual interference constraint is satisfied,

\[I_w(m, l) \leq p_l \cdot G_{Tx}^{FS}(\theta_l, n) \cdot G_{Rx}^{FS}(n, \theta_n, l) \cdot L(d_{l,n}, f_m) \]

\[p_{\max}(m, l) = \frac{I_w(m, l)}{G_{Tx}^{FS}(\theta_l, n) \cdot G_{Rx}^{FS}(n, \theta_n, l) \cdot L(d_{l,n}, f_m)} \]
Joint Power and Carrier Allocation (JPCA)

At the end we have,

$$P = \begin{bmatrix} p(1, 1) & \cdots & p(1, L) \\ \vdots & \ddots & \vdots \\ p(M, 1) & \cdots & p(M, L) \end{bmatrix}$$

Any combination of the powers contained in P never results in an aggregate interference above the acceptable threshold.
Find the optimal power allocation by maximizing the sumrate of the FSS system, which gives you the carrier allocation,

\[
\max_{\mathbf{B}} \| \text{vec}(\mathbf{B} \odot \mathbf{R}(\text{SINR})) \|_{l_1} \\
\text{s.t.} \quad \sum_{l=1}^{L} b(m, l) = 1,
\]

where \(\mathbf{B} = [b_1 \ldots b_L] \) and \(b_l \) is the carrier assignment of \(l \)-th FSS user.

\[
b_l(m) = \begin{cases}
1 & \text{if } m \text{-th carrier is assigned to the } l \text{-th user} \\
0 & \text{otherwise}
\end{cases}
\]
Numerical Evaluation

Simulation Setup

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_F^{FSS}</td>
<td>7 MHz</td>
</tr>
<tr>
<td>Shared band</td>
<td>27.5 – 29.5 GHz (285 carriers)</td>
</tr>
<tr>
<td>Exclusive band</td>
<td>29.5 – 30 GHz (71 carriers)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters for FSS system</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reuse pattern</td>
<td>4 color (freq./pol.)</td>
</tr>
<tr>
<td>Satellite location</td>
<td>13°E</td>
</tr>
<tr>
<td>$[G/T]_{\text{SAT}}^{\text{RX, max}}$</td>
<td>29.3 dB/k</td>
</tr>
<tr>
<td>EIRP</td>
<td>50 dBW</td>
</tr>
<tr>
<td>$[C/I]_{\text{RX}}^{\text{SAT}}$</td>
<td>10 dB</td>
</tr>
<tr>
<td>$G_{\text{TX}}(0)$</td>
<td>42.1 dBi</td>
</tr>
<tr>
<td>Antenna pattern</td>
<td>ITU-R S.465</td>
</tr>
<tr>
<td>Terminal height</td>
<td>15 m</td>
</tr>
<tr>
<td>Altitudes above the sea level</td>
<td>From [24]</td>
</tr>
<tr>
<td>D</td>
<td>35,786 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters for FS system</th>
<th>From database</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_F^{FS}</td>
<td>7 or 28 MHz</td>
</tr>
<tr>
<td>$G_{\text{RX}}(n, 0) \forall n$</td>
<td>34 dBi</td>
</tr>
<tr>
<td>Antenna pattern</td>
<td>ITU-R F.1245-2</td>
</tr>
<tr>
<td>Antenna height</td>
<td>10 m</td>
</tr>
<tr>
<td>$I_{\text{thr}, n}$</td>
<td>$-137.55 \text{ dBW @ 7 MHz}$</td>
</tr>
<tr>
<td></td>
<td>$-131.53 \text{ dBW @ 28 MHz}$</td>
</tr>
</tbody>
</table>
Numerical Evaluation

Simulation Results

- If they use Pmax → interference exceeds the acceptable threshold
- With JPCA → the interference is kept always below the threshold

SINR < 9.8 dB
- Sub opt JPCA → 35% of FSS
- Optimal JPCA → 22.5% of FSS
- w/o FS → 9.3%
Numerical Evaluation

Simulation Results

Total throughput per beam:

<table>
<thead>
<tr>
<th>Case</th>
<th>Technique</th>
<th>Value (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusive only</td>
<td>w/ JPCA (subopt)</td>
<td>699.5136</td>
</tr>
<tr>
<td></td>
<td>w/ JPCA (opt)</td>
<td>699.5291</td>
</tr>
<tr>
<td>Shared+Excl. w/o FS</td>
<td>w/ JPCA (subopt)</td>
<td>3538.0503</td>
</tr>
<tr>
<td></td>
<td>w/ JPCA (opt)</td>
<td>3538.5299</td>
</tr>
<tr>
<td>Shared+Excl. w/ FS</td>
<td>w/ JPCA (subopt)</td>
<td>3347.6373</td>
</tr>
<tr>
<td></td>
<td>w/ JPCA (opt)</td>
<td>3538.1431</td>
</tr>
</tbody>
</table>

- **405.8 %**
- **378.6 %**
Power and Rate Allocation in Cognitive Satellite Uplink Networks: Scenario C

Some notes

- Question: What is the optimal power allocation strategy for overlapping carriers in satellite uplink?

- Note that the satellite uplink works in an MF-TDMA mode.

- A good future direction: inclusion of bandwidth optimization.
System Model

- \(K \) satellite terminals
- \(L \) FS microwave stations
- \(p_k \) transmit power of the \(k \)-th satellite terminal
- \(p_{\text{max}} \) Maximum transmit power of a satellite terminal
- \(a_{k,l} \) Channel power gain of the interference link between the \(k \)-th satellite terminal and the \(l \)-th FS station.

The achievable rate by the \(k \)-th RCST is:

\[
r_k = \log_2 \left(1 + \frac{d_k p_k}{\sigma_k^2} \right)
\]

where

\(d_k \) denotes the channel power gain of the link from the \(k \)-th RCST to the satellite
\(\sigma_k^2 \) denotes the noise power level of the \(k \)-th satellite link.
Optimization problem

- Maximizing the user transmit rate and keeping the imposed interference to the FS system below a given limit.

\[
\begin{align*}
\max_{p} & \quad r \\
\text{s.t.} & \quad Ap \leq I_{\text{thr}}1 \\
& \quad 0 \leq p_k \leq p^{\text{max}}, \quad k = 1, \ldots, K
\end{align*}
\]

where

\[
p = [p_1 \ p_2 \ \ldots \ p_K]^T
\]

\[
A = \begin{bmatrix}
a_{1,1} & \cdots & a_{K,1} \\
\vdots & \ddots & \vdots \\
a_{1,L} & \cdots & a_{K,L}
\end{bmatrix}
\]

- Is a multi-objective optimization problem, since
- \(Ap \leq I_{\text{thr}}1 \) includes the L interference constraints required to guarantee the protection of the incumbent FS system.
 - Such limitations are defined by the regulatory authorities.
 - Typical reference limitations are given by ITU such as ITU-R F.758, where the interference level is recommended to be -10 dB below the receiver noise.
From the previous Multi-objective Optimization Problems it is clear that...

Each FSS terminal user aims at selfishly maximizing its own rate and ...

altruistically consume the interference limit of the FS receivers.

The \(\{r_k\} \) are monotonically increasing functions of the corresponding then the \(\{p_k\} \) objective problem is equivalent to

where \(\Omega \) denotes the set of feasible vectors satisfying the two previous constraints and is convex.

Pareto feasible \(\mathcal{P} = \{p : p \in \Omega\} \) the set that contains all the combinations of possible values that are simultaneously attainable with the available resources.

\[
\begin{align*}
\max_{p} & \quad r \\
\text{s.t.} & \quad Ap \leq I_{\text{thr}}1 \\
& \quad 0 \leq p_k \leq p^{\max}, \ k = 1, \ldots, K
\end{align*}
\]
Example

Problem:

\[
\begin{align*}
\max_p \quad & r \\
\text{s.t.} \quad & Ap \leq I_{\text{thr}} 1 \\
& 0 \leq p_k \leq p_{\text{max}}, \quad k = 1, \ldots, K
\end{align*}
\]

Example: K=2, L=3

\[
A = \begin{bmatrix} 0.4 & 0.25 \\ 0.1 & 0.3 \\ 0.2 & 0.1 \end{bmatrix}, \quad I_{\text{thr}} = 2, \quad p_{\text{max}} = 10, \quad d_k = 1, \quad \sigma_k^2 = 1, \quad \forall k
\]

Any point in the Pareto boundary is an optimal point.
General Iterative Framework for Pareto-Optimization

Considering:

\[
\max_x \text{ all } y \ f(x, y) \\
\text{s.t. } x \in \Gamma
\]

A Pareto-Optimal solution is given by the following iterative approach*:

Given \(x^{(t)} \in \Gamma \), obtain \(x^{(t+1)} \) solution to:

\[
\max_{x^{(t+1)}} \min_y \left\{ \frac{f(x^{(t+1)}, y)}{f(x^{(t)}, y)} \right\} \\
\text{s.t. } x^{(t+1)} \in \Gamma
\]

(*) Proof given in the manuscript.

This always provide a solution in the Pareto boundary. The only constraint is that the initial point should be within the Pareto region.

Application to cognitive satellite uplink:

\[
\max_p \ p \\
\text{s.t. } p \in \Omega
\]

\[
\max_{p^{(t+1)}} \min_k \left\{ \frac{p_k^{(t+1)}}{p_k^{(t)}} \right\} \\
\text{s.t. } p_{133}^{(t+1)} \in \Omega
\]
Multi-Objective to Single-Objective transformation

- The solution of a multi-objective optimization problem consists of a set (the Pareto boundary).
- However, we need a single solution for operation.
- Picking a desirable point out of the set of the Pareto boundary requires the incorporation of preferences or priorities into the problem.

Multi-Objective to Single-Objective transformations considered here:

- Weighted sum
 - It is the simplest multi-criteria decision making method.
 - It is a compensatory method ("poor" user rates can be compensated by "good" ones.
 - The relation between weights and user rate requirements remains unsolved

- Fairness
 - The rate of all users will be degraded to match the rate of the user with the lowest quality channel
 - We study: Max-Min Fairness and Proportional Fairness.
Maximization of weighted sum-rate

- Maximization of a weighted sum of user rates is one of the most popular figures of merit for measuring the performance of a communication system.

\[
\max_{\mathbf{p}} \sum_{k=1}^{K} w_k \log_2 \left(1 + \frac{d_k p_k}{\sigma^2} \right)
\]

s.t. \(\mathbf{p} \in \Omega \)

Where \(\{w_k\} \) are non-negative weights assigned to the RCSTs, with

\[\sum_{k=1}^{K} w_i = 1\]

- Note that the objective function is concave with respect to the power values, so it can be solved numerically using convex solvers, e.g. CVX.
Max-Min Fairness

- Max-Min fairness is a type of resource allocation problem to make sure weakest users are not penalized.

- In other words, it maximizes the user with the minimum rate:

\[
\max_{p \in \Omega} \min_k \{ r_k \}
\]

- The most widely used algorithm for obtaining max-min fairness is the water-filling algorithm (WF) [6]
 - Intuitively, WF satisfies users with a poor conditions first, and distributes evenly the remaining resource to the remaining users enjoying a good condition.

In our case, we focus first on assigning the power of the RCST transmitters (the bottleneck RCSTs) affecting the worst FS station, i.e., the FS station which receives the highest level of aggregate interference.

Proportional Fairness

- Max-Min fairness does not perform well in the presence of bottleneck users: if one user imposes strong interference constraints it may prevent the others from improving.

- **Proportional fairness (PF):** a transfer of resources between two users is accepted if the percentage increase in rate of one user is larger than the percentage decrease in rate of the other user.

In [7], it is proved that a proportionally fair allocation of rates is given by maximizing the sum of logarithmic utility functions.

\[
\max_{p} \sum_{k=1}^{K} \log_{10}(p_k)
\]

s.t. \(p \in \Omega \)

- This is a concave problem, and thus can be solved by convex solvers, e.g. CVX.

Numerical Evaluation

\[K=2, \ L=3 \]

\[
\mathbf{A} = \begin{bmatrix}
0.4 & 0.25 \\
0.1 & 0.3 \\
0.2 & 0.1 \\
\end{bmatrix}, \quad I_{\text{thr}} = 2, \quad p^{\text{max}} = 10, \quad d_k = 1, \quad \sigma_k^2 = 1, \quad \forall k
\]

(*) For sum-rate and sum-power, we take weights equal to 1.

For the proposed Pareto-Optimal algorithm, the initial point is chosen at random.

Numerical Evaluation

- **Summary of results**

<table>
<thead>
<tr>
<th>Technique</th>
<th>r_1</th>
<th>r_2</th>
<th>$r_1 + r_2$</th>
<th>$r_1 - r_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[10]</td>
<td>1.0375</td>
<td>2.871</td>
<td>3.9085</td>
<td>1.8335</td>
</tr>
<tr>
<td>Pareto optimal (9)</td>
<td>1.4537</td>
<td>2.6363</td>
<td>4.09</td>
<td>1.1826</td>
</tr>
<tr>
<td>Sum-Rate (10)</td>
<td>1.7279</td>
<td>2.406</td>
<td>4.1339</td>
<td>0.67802</td>
</tr>
<tr>
<td>Max-Min (Algorithm 1)</td>
<td>2.0275</td>
<td>2.0275</td>
<td>4.055</td>
<td>0</td>
</tr>
<tr>
<td>PF (16)</td>
<td>1.8074</td>
<td>2.3219</td>
<td>4.1293</td>
<td>0.51451</td>
</tr>
</tbody>
</table>

- The technique presented in [10] perfectly matches with the solution of the maximization of the sum-powers.
- The Max-Min fairness gives the same rate to both users.
- The PF allows a small difference between individual rates to achieve higher sum-rate compared to the max-min.
- The Pareto optimal solution lies in the Pareto boundary, but its value strongly depends on the initial power assignment.

According to the achieved results, PF seems to be the best solution since it provides a good trade-off between fairness and overall satellite throughput. Even so, the choice of appropriate algorithm depends on the design criteria we want to follow.
Some current and future directions:

- Carrier, bandwidth and power allocation for multiple cognitive satellite systems.

- Coexistence of multiple antenna satellite systems with terrestrial and satellite networks

- Spectrum cartography of Ka band incumbent systems, National Project SATSENT: http://wwwen.uni.lu/snt/research/research_projects2/satsent_satellite_sensor_networks_for_spectrum_monitoring

- Other related projects:
 - National project SeMIGod: http://wwwen.uni.lu/snt/research/research_projects2/semigod_spectrum_management_and_interference_mitigation_in_cognitive_radio_satellite_networks
 - ESA Project ASPIM:
Future Topics: On-Board Signal Processing
On-Ground Techniques

• Work horse for enhancing performance
• Allows use of well established bent-pipe design
 – Saves on-board power, mass
 – Payload design can be agnostic to
 • Service and traffic
 • Waveform
 • Techniques used
• Incorporates Flexibility
 – Use of new techniques
 – Upgrade algorithm/ parameters
 – Implementation platform
• Imposes Academic Challenges
 – Differentiates with terrestrial communication design

Courtesy: DLR
On-Ground Processing Limitations

- High throughput → New techniques
- New techniques bring new challenges
 - Can overload the workhorse
- Complex on-ground processing cannot be implemented at UT
- Stronger impairments and poorer efficiency
 - Propagation effects
- Inefficient Feeder Link Utilization
 - E.g., on-ground beamforming
- Higher Latency
 - Large round trip delays affect MSS applications (typically 250 ms)
On-Ground Processing Limitations

• Inadequacy of information
 – Loss of useful information after multiplexing (e.g., angles of arrivals)

• Inadequacy of support
 – Full-duplex relaying
 – Network coding
 – Anti-jamming
 – Multiple interference tracking over one carrier
 – Inter-satellite communications

Courtesy: DLR Institute for Communication and Navigation
Benefits of OBP

• **Increased flexibility creating more networking capability in the sky**
 - Routing, mesh connectivity
 - Lower latency
 - Resource management

• Relieving the burden of on-ground processing

• Less complex ground equipment
 - Spectrum monitoring units
 - Uplink gateways
 - User equipment
 - Uplink Energy-efficiency

• Feeder link BW reduction, fewer GWs

Courtesy: Thales Alenia Space
Benefits of OBP

• Higher user and system throughput, link spectral efficiency
 – Predistortion and interference mitigation improve SINR
 – Newer Waveforms
 – Full Duplexing

• System Robustness
 – Anti-jamming
 – Higher resilience to the interference

On-board processing is an important component in the next generation of satellites to keep SatCom competitive in the market.
Evolution of On-Board Processing

- **Traditional Bent-pipe**
 - Analog processing, frequency shift, amplification, multiplexing, switching, digital control

- **On-board Digital Processing (DTP)**
 - Digitize to IF for switching, beamforming, bandwidth allocation, frequency shifting, etc.

- **Wideband On-board Digital Processing (Regenerative)**
 - Demod/remod, decode/uncode ultimately a fully active network element
Current On-Board Processing Technology

<table>
<thead>
<tr>
<th>SATELLITE, BAND</th>
<th>PROCESSOR</th>
<th>FUNCTIONALITIES</th>
<th>APPLICATIONS & BENEFITS</th>
</tr>
</thead>
</table>
| Hotbird6 | Regenerative Skyplex | Multiplexing streams with audio, video and data content, Turbo decoding. Flexibility in (i) channel gains, (ii) uplink-downlink channel mapping, (iii) BW allocation on uplink. | Internet and TV
- Reduced latency |
| SPACEWAY 3 | Regenerative | Switching, Routing, user-user connectivity, Dynamic Beamforming. Flexibility in (i) channel to beam assignment, (ii) Bandwidth and power allocation, (iii) uplink-downlink channel mapping. | Broadband IP services
- Reduced latency |
| Amazonas 1, 2 | Regenerative AmerHis | Routing (DVB-S/S2/RCS support), Multiplexing, Mesh networking, Digital filtering, turbo decoding, user-user connectivity, Flexibility in (i) channel to beam assignment, (ii) Bandwidth allocation, (iii) uplink-downlink channel mapping. | Multibeam broadband multimedia services
- Reduced latency |
| HISPASAT-AG1 | REDSAT | Digital Beam forming; Flexibility in (i) channel to beam assignment, (ii) Bandwidth allocation, (iii) channel gains, (iv) uplink-downlink mapping. | Interactive services, GSM
Real-time adaptation |
| Thuraya (L band)| DTP (Processing in IF) | Digital Beam forming; Flexibility in (i) channel to beam assignment, (ii) Bandwidth allocation, (iii) channel gains, (iv) uplink-downlink mapping. | Global 3G Mobile Communications
- Enhanced rate, flexibility, capacity |
| Inmarsat-4 | DTP (Processing in IF) | Digital Beam forming; Flexibility in (i) channel to beam assignment, (ii) Bandwidth allocation, (iii) channel gains, (iv) uplink-downlink mapping. | |
Challenges with OBP

• **Additional payload/hardware is required**
 - Higher mass and power consumption
 - Manage processor heating

• **Reliability**
 - Backup DSP chains is required in case of component failure

• **Adaptivity**
 - Reconfiguring HW chains

• **Limited **sampling capability** (ADC dynamics and power requirements)**

• A key question to be answered: **How much OBP?**

Low cost but reliable processing techniques are required
Conclusions

- Driving applications for SatCom are changing:
 - Absolute need to take advantage of new & advanced DSP solutions overcoming conservative approach of the satellite industry
 - New paradigms are emerging, large-LEO networks, small/cheap/redundant satellites

- From link to **communication network** design

- Applicability of different DSP solutions
 - Important differences between Sat/Terr: Not straightforward extension of terrestrial solutions
 - Long channel coherence time favors many advance DSP solutions

- **High Throughput Satellites**
 - Interference mitigation required – MUD, pre-coding, interference cancellation, resource management, etc.
 - Cognitive radio techniques have great potential to exploit spectrum more efficiently

- **On-board Processing**
 - Networking functionality on-board
 - Increased flexibility adapting to traffic demand
 - Numerous challenges remain
Contact Info

Interdisciplinary Centre for Security, Reliability and Trust – SnT
University of Luxembourg
Luxembourg

http://www.securityandtrust.lu