Pattern Maximum Likelihood Estimation of Finite-State Discrete-Time Markov Chains

Shashank Vatedka
Dept. of Electrical Communication Engineering
Indian Institute of Science
Bengaluru, India
shashank@ece.iisc.ernet.in

Pascal O. Vontobel
Dept. of Information Engineering
The Chinese University of Hong Kong
Shatin, NT, Hong Kong
pascal.vontobel@ieee.org

Abstract—To be considered for the 2016 IEEE Jack Keil Wolf ISIT Student Paper Award. We study the problem of estimating the pattern maximum likelihood (PML) distribution for discrete-time Markov chains (DTMCs). The PML problem for memoryless sources has been well studied in the literature and we propose an extension of the same for DTMCs. For memoryless sources, Acharya et al. have shown that plug-in estimators obtained from the PML estimate yield good estimates for symmetric functionals of the distribution. We show that this holds for the PML estimate of DTMCs as well. Finally, we express the PML estimate for DTMCs as the double minimization of a certain free energy function and discuss some mean-field approximations to approximate the PML estimate efficiently.

I. INTRODUCTION

Consider the following setup where we observe samples from a time-homogeneous discrete-time Markov chain (DTMC) over a finite state space/alphabet S. We assume that the DTMC is irreducible, i.e., the chain can go from any state to any other state in a finite number of steps. We know that $|S| = k$, but we have no knowledge about the initial distribution or the transition kernel. By observing n samples (random walk of length n), we want to estimate the structure of the transition kernel, i.e., find the transition kernel up to a relabeling of the states. In other words, we want to find the state transition diagram, but we are not interested in knowing the exact correspondence between the states of the DTMC and the nodes in the transition diagram. This is of interest if we wish to estimate symmetric properties of the transition kernel, i.e., those properties of the kernel that are invariant to a relabeling of the states. The entropy rate of the DTMC is a typical example of a symmetric property, and so are the eigenvalues of the transition probability matrix. As a special case, this approach may be used to estimate several parameters of a graph (such as the eigenvalues of the Laplacian matrix, the degree distribution, and so on) or the structure of the graph from a random walk on the graph.

This work is inspired by the well-studied problem of finding the pattern/profile maximum likelihood estimate for memoryless sources [1], which we briefly describe here. Suppose that we have an i.i.d. sequence of random variables which are distributed according to a probability mass function (pmf) p over a set S. Suppose that we observe a length-n sequence x. The pattern associated with x, $\psi(x) = \psi_1 \psi_2 \ldots \psi_n$, is the string obtained by replacing each symbol in x by its order of appearance. Let us define this formally. For every x which appears in x, we define the index of x to be 1 more than the number of unique symbols that were observed before the first occurrence of x in x. For example, if $x = abcebsaa$, then the index of a is 1, the index of b is 2, that of c is 3, and s has an index of 4. The pattern of x is the length-n string of positive integers obtained by replacing each symbol of x by its index. For example, if $x = abcebsaa$, then $\psi(x) = 12332411$. The pattern is invariant to a relabeling of the alphabet. For instance, the strings miss and puff both have the pattern 1233.

The pattern maximum likelihood (PML) estimate of a memoryless source is that distribution (pmf) p on S which maximizes the probability of occurrence of the pattern $\psi(x)$. This also yields the maximum likelihood estimate of the probability multiset [1]. The study of the PML estimate was inspired by the problem of universal compression of i.i.d. sources over unknown alphabets in [2]. It was shown that even an optimal universal compression scheme for i.i.d. sequences of unknown sources over large alphabets could result in large redundancy, whereas one can obtain low redundancy if we only compress the pattern of the observed sequence. This led to the search for efficient schemes to obtain the PML estimate [3], [4], [5]. It was recently shown in [6] that using a plug-in estimator obtained from the PML estimate yields an order-optimal sample complexity for estimating certain symmetric properties of distributions.

Inspired by the results on PML for memoryless sources, we study the PML problem for the simplest sources with memory: DTMCs. The results in [2] were extended in [7] to find the redundancy of optimal universal compression schemes for DTMCs over unknown alphabets. The authors of [7] showed that unlike the memoryless case, the redundancy for compressing the pattern of a DTMC can be unbounded for large alphabets. However, they showed that for hidden Markov models where the number of states is not too large, one can achieve low redundancy. There has also been recent work on automata and graph compression [8]. Also relevant is the work

This work was mainly done when the first author was an intern at the Dept. of Information Engineering, The Chinese University of Hong Kong, where he was supported by CUHK Direct Grant 4055039 and the Institute of Network Coding. The work of the first author was also supported in part by a Tata Consultancy Services research fellowship.
in [9], which studies compression of unlabeled graphs, or what they call graph structures. The authors give a compression scheme which is shown to be asymptotically optimal for Erdős-Rényi graphs. There is also a recent approach by [10] to estimate and compress graphs using random walks. We address the following question in the spirit of [9]: Can we infer the structure of the graph from a random walk starting from a randomly chosen initial state? This is a special case of the more general problem of finding the structure of a finite-state DTMC from a length-\(n\) random walk that we study here.

In this article, we define the PML problem for finite-state DTMCs. We will assume that the state space/alphabet is known. We introduce the notion of a label-invariant representation of the transition kernel (what we call a canonical transition matrix), and show that the PML estimate is actually the ML estimate of the canonical transition matrix. Using the results of [6], we show that plug-in estimators obtained from the PML estimate can efficiently estimate symmetric properties of the transition kernel. We then pose the PML computation problem as the double minimization of a certain free energy function and discuss some mean-field approximations for the same. We have omitted proofs in this paper due to lack of space, but they can be found in [11].

II. The PML Problem for DTMCs

Suppose that we observe a length-\(n\) sequence \(x = x_1x_2\ldots x_n\) of an irreducible DTMC on \(S\). We only know \(k \triangleq |S|\). More generally, we can assume that we know an upper bound, \(k\), for \(|S|\). Without loss of generality, we can assume that \(S = [k] \triangleq \{1, \ldots, k\}\). Unless mentioned otherwise, we will always assume that the initial distribution is uniform over \(S\), i.e., \(\Pr[X_1 = x] = \frac{1}{k}\) for all \(x \in S\). If the transition probability kernel is \(p_{x,y} \triangleq \Pr[X_{t+1} = y | X_t = x]\), then we see that the probability of observing \(x\) is

\[
\Pr[X = x] = \frac{1}{k} \prod_{t=1}^{n-1} p_{x_{t+1}, x_t}. \tag{1}
\]

Note that the probability in (1) can be rewritten as

\[
\Pr[X = x] = \frac{1}{k} \prod_{(x,y) \in S \times S} p_{x,y}^{\{t \in [n-1] : x_t = x, x_{t+1} = y\}}. \tag{2}
\]

We define \(\psi(x)\) to be the pattern of \(x\). Moreover, we define the \(k \times k\) multiplicity matrix \(M = (\mu_{i,j})_{i,j}\) associated with \(\psi\) as follows: \(\mu_{i,j} \triangleq |\{t : \psi_t = i, \psi_{t+1} = j\}|\). In other words, \(\mu_{i,j}\) counts the number of times the transition \((i,j)\) is present in the pattern \(\psi\).

The pattern probability is obtained by averaging (2) over all possible relabelings of the alphabet, i.e.,

\[
\mathbb{P}(\psi|p) \triangleq \frac{1}{k} \sum_{\sigma} \prod_{i=1}^{k} \prod_{j=1}^{k} p_{\sigma(i), \sigma(j)}^{\mu_{i,j}}, \tag{3}
\]

where the above summation is over all possible permutations of \([k]\). In comparison, the pattern probability for an i.i.d. sequence with pmf \(p\) is given [4] by \(\mathbb{P}_{\text{i.i.d.}}(\psi|p) \triangleq \sum_{\sigma} \prod_{j} p_{\sigma(j)}\).

We are ultimately interested in a label-invariant estimate of the transition probability matrix. To ensure that such an estimate is unique, we define the following notion of a canonical transition probability matrix. Given two \(k \times k\) matrices \(A\) and \(B\), we say that \(A \geq B\) if \(A\) is lexicographically greater than \(B\), i.e., \((A)_{11} > (B)_{11}\), or \((A)_{11} = (B)_{11}\) and \((A)_{12} > (B)_{12}\), or \((A)_{11} = (B)_{11}\) for all \(l \leq m\) and \((A)_{1,m+1} > (B)_{1,m+1}\), and so on. For example, if \(A = \begin{bmatrix} 1/2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \end{bmatrix}\) and \(C = \begin{bmatrix} 0 & 0 \end{bmatrix}\), then, \(A > B > C\).

Given a matrix \(M\), we define \(T(M) \triangleq \{T'MT : T\) is a permutation matrix\}, where \(T'\) denotes the transpose of \(T\). A \(k \times k\) stochastic matrix \(M\) is said to be canonical if \(M = \max T(M)\).\(^3\) Although there is no known polynomial-time algorithm to compute \(\max T(M)\) in general, this maximum can be computed in polynomial time if the entries of \(M\) are all guaranteed to be distinct.

The canonical matrix corresponding to \(M\) is some \(T'MT\) (where \(T\) is a permutation matrix) which is canonical. The canonical matrix corresponding to \(M\) is essentially a label-invariant representation of \(M\). Let \(C\) denote the set of all \(k \times k\) canonical row-stochastic matrices. Inspired by [1], [4], we define the pattern maximum likelihood transition probability distribution to be

\[
p_{\text{PML}}^{(\psi)} = \arg \max_{p \in C} \mathbb{P}(\psi|p). \tag{4}
\]

An interesting property is that the PML distribution is the ML estimate of the canonical transition kernel. The reader is directed to Appendix A for more details.

III. Estimation of Parameters of the Markov Chain

We say that a functional \(f\) of the transition kernel \(p\) is symmetric if it is invariant to a relabeling of the states. Suppose that we are interested in estimating the symmetric property/functional \(f(p)\) from a random walk of length \(n\) starting from a random initial state. To do this, one could simply use the ML estimator for \(f(p)\). However, if we are interested in estimating different functions, we would have to compute the ML estimate for each function. This may not always be feasible since finding the ML estimate may be computationally hard and efficient approximations may not be known. Another approach is to find the PML estimate \(p_{\text{PML}}^{(\psi)}\) and plug this in \(f\), i.e., compute \(f(p_{\text{PML}}^{(\psi)})\). Though suboptimal, this simple plug-in estimator can be used to estimate any symmetric functional of \(p\). Moreover, we will show that such plug-in estimates obtained from the PML estimate can perform nearly as well as an optimal estimator for \(f\).

\(^1\)Essentially, we want to estimate the graph up to an isomorphism/relabeling of the vertices.

\(^2\)Throughout, \((a_{ij})_{i,j}\) denotes the \(k \times k\) matrix whose \((i,j)\)th entry is \(a_{ij}\). Furthermore, the \((i,j)\)th entry of a matrix \(A\) is \((A)_{ij}\).

\(^3\)We can define a canonical matrix in a number of ways. For convenience, we have defined it using the lexicographic order. Our only objective is to ensure that the PML estimate is unique.
There are several symmetric functionals that are of practical interest. A common example is the entropy rate of an ergodic DTMC, given by $H(p) = -\sum_{i,j} \lambda_i \cdot p_{i,j} \log p_{i,j}$, where λ is the stationary distribution. The plug-in approach can also be used to infer properties of an unlabeled graph from a random walk starting from an arbitrary vertex. Several useful parameters of the graph such as the degree distribution, the eigenvalues of the adjacency matrix, and so on are symmetric properties. For example, the degree distribution, which we denote by $\{a_i : 1 \leq i \leq n\}$, is given by $a_i = |\{j : p(i,j) > 0\}|$.

Another commonly used (and general) technique is to find the ML estimate of the transition kernel (what we call the interest. A common example is the entropy rate of an ergodic process). For every $i,j \in [k]$, we then find the plug-in estimate $p_{\text{SML}}(i,j)$. Here p_{SML} is defined as follows. If $\mu_{ij}^{(k)} = \{(l : x_l = i, x_{l+1} = j)\}$, then for all $i,j \in [k]$

$$p_{\text{SML}}(i,j) \triangleq \begin{cases} \frac{1}{k} & \text{if } \mu_{ij}^{(k)} = 0 \text{ for all } j' \in [k] \\ \frac{1}{c_i \mu_{ij}^{(k)}} & \text{otherwise} \end{cases} \quad (5)$$

where the proportionality constants $\{c_i : 1 \leq i \leq k\}$ ensure that $(p_{\text{SML}}(i,j))_{i,j}$ is a row-stochastic matrix.

Our estimate of f is then $f(p_{\text{SML}})$. We call this the plug-in estimator derived from the SML estimate.

Let us now turn our attention to the plug-in estimator based on p_{PML}, i.e., $f(p_{\text{PML}}(\psi))$. The natural question to ask is the following: How suboptimal is the plug-in estimator derived from the PML estimate when compared to the best estimator for $f(p)$? We will answer this question in terms of the size of the alphabet and the number of samples. The relationship that we derive is exactly along the lines of [6] for memoryless sources. Since we are interested in symmetric properties of p, the pattern $\psi(x)$ is a sufficient statistic to estimate f from x.

We now state the following proposition, which follows, mutatis mutandis from [6, Theorem 2]. Let $\mathcal{Z}^{(n)}$ denote the set of all length-n patterns.

Proposition 1. Let f be any symmetric functional of p. Suppose there exists an estimator \hat{f} for $f(p)$ that takes as input the pattern of a length-n sequence $x^{(n)}$, and has the following property: For every $\epsilon > 0$, $\delta > 0$ and transition probability distribution p, there exists a positive integer N such that

$$\Pr\left[|f(p) - \hat{f}(\psi(x^{(n)}))| \geq \epsilon\right] < \delta$$

for all $n \geq N$. Then,

$$\Pr\left[|f(p_{\text{PML}}(\psi(x^{(n)}))) - f(p)| \geq 2\epsilon\right] < \delta \cdot |\mathcal{Z}^{(n)}|$$

for all $n \geq N$.

Proof. Omitted.

Note that the estimate so obtained may not yield a canonical TPM, and a relabeling of states may be required to ensure this. However, for the rest of this article, we will omit this technicality, but it must be understood that a relabeling is needed to make the obtained transition kernel canonical. Of course, the relabeling does not matter if we are interested in estimating symmetric properties.

Using [1] we have $|\mathcal{Z}^{(n)}| \leq \min \left\{ e^{3\sqrt{n}}, \left(\frac{n+k-1}{k-1} \right) \right\}$. Hence, if the probability of estimation error of the optimal estimator for f decays exponentially in n, then the probability of estimation error of the plug-in estimator derived from the PML estimate also decays exponentially in n.

IV. Variational Approaches

We now discuss some techniques to efficiently compute the PML estimate. It is known that computing the PML estimate for memoryless sources is a hard problem, as it is equivalent to maximizing the permanent over a certain class of matrices [4], [5]. Similarly, computing the PML estimate for Markov chains is also difficult. In [12], using techniques from [13], the permanent was expressed as a minimum of a certain free energy function. However, this minimization is computationally intractable, but several approximations [13] exist. Most notable is the Bethe approximation, since one can use low-complexity belief propagation algorithms to arrive at the estimate. We direct the interested reader to [13] and references therein for more details regarding the variational approach and free energy approximations and to [12] for details regarding the Bethe approximation of the permanent. Following [4], [5] for memoryless sources, we will formulate (4) as a problem of double minimization of a certain free energy function. We will then study some mean-field approximations for the PML estimate.

Let us denote the class of all $k \times k$ permutation matrices by \mathcal{C}, and let \mathcal{P} be the set of all pmfs on \mathcal{C}. We can rewrite the pattern probability (3) as follows

$$\Pr(\psi | p) = \frac{1}{k} \sum_{\sigma \in \mathcal{K}} \prod_{i,l,m} p_{l,m}^{\mu_{il}^{(k)} \sigma_{il} \sigma_{jm}}. \quad (8)$$

Let $\beta \in \mathcal{P}$. The Gibbs free energy function is defined as

$$F_G(\beta; p, \psi) \triangleq U_G(\beta; p, \psi) - H_G(\beta),$$

where U_G denotes the Gibbs average energy function and is given by

$$U_G(\beta; p, \psi) \triangleq \log k - \sum_{\sigma \in \mathcal{K}} \beta(\sigma) \log p_{l,m}^{\mu_{il}^{(k)} \sigma_{il} \sigma_{jm}},$$

and H_G is the Gibbs entropy function, which is defined as $H_G(\beta) \triangleq -\sum_{\sigma \in \mathcal{K}} \beta(\sigma) \log \beta(\sigma)$. The minimum of F_G over all $\beta \in \mathcal{P}$ gives the negative logarithm of the partition function [13], which is $-\log Z \triangleq -\log \Pr(\psi | p)$. Following [4], [5], the pattern maximum likelihood estimate can be written as

$$p^{(\psi)}_\text{PML} = \arg\min_{\beta \in \mathcal{P}} \arg\min_{p \in \mathcal{C}} F_G(\beta; p, \psi). \quad (10)$$

Since the above minimization is computationally hard, we will resort to approximations of the above. The Bethe approximation in particular is a popular approach, due to the fact that the sum-product algorithm (SPA) can often be used to efficiently compute the minimizer of the Bethe free energy function [13]. This was explored in detail in [4], [5] for finding

Note that here we have used $\sigma = (\sigma_{ij})_{i,j}$ to denote a permutation matrix.
the PML estimate of memoryless sources. This was aided by the success of the Bethe approximation for computing the permanent in [12], where a suitable factor graph was designed and it was shown that the SPA on this factor graph admits useful convergence and correctness guarantees. We tried a similar approach for our problem, but have so far been unable to design a good factor graph for which the SPA is computationally efficient and at the same time yields a good estimate. We found that the computational complexity grows very fast \((O(k^3))\) and the SPA algorithm becomes difficult to implement for \(k\) larger than about 15. Hence, we study mean-field approximations, which give the most computationally efficient estimators.

A. The Traditional Mean-Field (MF) Approximation

Variational approaches typically approximate the Gibbs free energy function by either relaxing the global function, and/or restricting the class of pmfs (which is \(\beta\) in this case) over which we find the minimum [13]. The traditional MF approximation is obtained by restricting \(\beta\) to be a product distribution [13]. We call the resulting PML estimate the traditional MF PML estimate (TMFPML), and we will show that this reduces to the SML estimate defined in (5). We will also introduce another MF approximation, which we call the mean-field PML estimate (MF-PML) in the next subsection.

We begin the derivation of TMFPML by rewriting the partition function/pattern probability in (8) in a suitable fashion: \(\mathbb{P}(\psi|p) = \sum_{\sigma \in \{0,1\}^{k \times k}} 1_{\mathcal{K}}(\sigma) \prod_{i,j,l,m} p_{i,j,m}^{\beta_{ij}(\sigma_{ij})} \), where \(1_{\mathcal{K}}(\sigma)\) is a function that takes the value 1 if \(\sigma \in \mathcal{K}\) and 0 otherwise. The mean-field free energy function is obtained by replacing \(\beta\) in (9) by a product distribution. Let \(\beta = \{(\beta_{ij}(0), \beta_{ij}(1)) : \beta_{ij}(0), \beta_{ij}(1) \geq 0, \beta_{ij}(0) + \beta_{ij}(1) = 1, \forall 1 \leq i, j \leq k\}\). Then, \(\beta(\sigma) = \prod_{i,j} \beta_{ij}(\sigma_{ij})\), and so

\[
F_{\text{TMF}}(\beta; p, \psi) = -\sum_{\sigma \in \{0,1\}^{k \times k}} \left(\prod_{i,j,l,m} \beta_{ij}(\sigma_{ij}) \log 1_{\mathcal{K}}(\sigma) \prod_{i,j,l,m} p_{i,j,m}^{\beta_{ij}(\sigma_{ij})} \right) + \sum_{i,l} \beta_{il}(\sigma_{il}) \log \beta_{il}(\sigma_{il}) + \log k. \tag{11}
\]

The double minimization of (11) over \(\beta\) and \(p\) gives us the traditional mean-field PML estimate, i.e.,

\[
p_{\text{TMFPML}}^{(\psi)}(\beta) = \min_{p \in C} \min_{\beta \in \mathcal{B}} F_{\text{TMF}}(\beta; p, \psi). \tag{12}
\]

Lemma 1. For every \(\psi\), we have \(p_{\text{TMFPML}}^{(\psi)} = \max_{\psi} \mathcal{T}(p_{\text{SML}})\).

Proof. Omitted.

B. MF Approximation Inspired by Chertkov and Yedidia

Inspired by the MF approach of Chertkov and Yedidia for the problem of computing the permanent [14], we define the following approximation of the Gibbs free energy function. In the traditional MF estimate, the minimization of the free energy function, viewed as a function of the matrix \((b_{ij})_{i,j} \triangleq (\beta_{ij}(1))_{i,j}\), is performed over the set of all \(k \times k\) permutation matrices. The new MF approximation is obtained by minimizing the free energy function over doubly stochastic matrices. Let \(\mathcal{D}\) denote the set of all \(k \times k\) doubly stochastic matrices. For every \((b_{ij})_{i,j}\),

\[
F_{\text{MF}}((b_{ij}); p, \psi) = -\sum_{i,j,l,m} b_{il} b_{jm} \log p_{i,j,m}^{(b_{ij})} - \sum_{i,l} b_{il} \log p_{i,l}^{(b_{il})} + \sum_{i,l} \left(b_{il} \log b_{il} + (1 - b_{il}) \log(1 - b_{il}) \right) + \log k. \tag{13}
\]

The mean-field PML (MF-PML) estimate is defined as

\[
p_{\text{MF-PML}}^{(\psi)}(\psi) = \arg \min_{(b_{ij}) \in \mathcal{D}} \min_{\psi \in C} F_{\text{MF}}((b_{ij}); p, \psi).
\]

Some remarks are in order. Substituting \(b_{ij} = \beta_{ij}(1)\) in (11), it can be verified that apart from the domain of \((b_{ij})\), the difference between (11) and (13) is mainly in the term \(\sum_{\sigma \in \{0,1\}^{k}} \left(\prod_{i,j,l,m} b_{il}^{\beta_{ij}(\sigma_{ij})} \right) \log 1_{\mathcal{K}}(\sigma)\), which is absent in (13). While the traditional MF approximation always gives a lower bound for the partition function [13], the above approximation does not. Additionally, \(F_{\text{MF}}\) is in general not a convex function of \((b_{il})_{i,l}\).

We conclude this section with the following proposition.

Proposition 2. The MF-PML estimate converges to the SML estimate as the number of observed samples \(n\) goes to infinity.

Proof. Omitted.

C. Simulation Results

We randomly generated \(k \times k\) transition probability matrices and computed plug-in estimates of the entropy rate and the absolute value of the second-largest eigenvalue of the transition matrix from length-\(n\) random walks starting from an arbitrary state. These plug-in estimates were computed using the SML and the MF-PML estimates and compared with the values computed using the (true) transition matrix. We performed an alternate minimization of \(F_{\text{MF}}\) with respect to \(p\) and \(\{b_{il}\}\) to obtain the MF-PML estimate. We used Algorithm 1 for computing the minimum of \(F_{\text{MF}}\) with respect to \(\{b_{il}\}\). The algorithm simply performs iterations over the fixed-point equations obtained from the Lagrangian derived from \(F_{\text{MF}}\).

Histograms of the estimation error in estimating the entropy rate (Fig. 2) and the second-largest eigenvalue (Fig. 1) demonstrate that the MF-PML estimate performs better than the SML estimate when the number of samples is roughly equal to \(k^2\). More results can be found in [11]. We have also found that the trend continues until for very large \(n\), where the SML estimate is a better approximation for the true transition kernel.
Data: \(\{ p_{i,j}^{(l,m)} : 1 \leq i,j,l,m \leq k \} \)
Result: \(\{ b_{il}^{(l)} \} \)
Initialize beliefs \(\{ b_{il}^{(0)} : 1 \leq i,l \leq k \} \);
Initialize Lagrange multipliers \(\{ u_{il}^{(0)} : 1 \leq i \leq k \} \) and \(\{ v_{il}^{(0)} : 1 \leq l \leq k \} \);
\(t \leftarrow 1 \);
while suitable stopping condition not reached do
\[
\begin{align*}
\hat{b}_{il}^{(t)} &= \left(\frac{p_{i,l}^{(l)} \prod_{j \neq i,m \neq l} p_{j,m}^{(l)} b_{j,m}^{(l)}}{u_{il}^{(t-1)} v_{il}^{(t-1)} + p_{i,l}^{(l)} \prod_{j \neq i,m \neq l} p_{j,m}^{(l)} b_{j,m}^{(l)}} \right) \\
u_{il}^{(t)} &= u_{il}^{(t-1)} \sum_{l} \hat{b}_{il}^{(t)} \\
v_{il}^{(t)} &= v_{il}^{(t-1)} \sum_{i} \hat{b}_{il}^{(t)} \\
\end{align*}
\]
\(t \leftarrow t + 1 \);
\(b_{il}^{(t)} = b_{il}^{(t-1)} \);

Algorithm 1: Algorithm used in MFPML approximation.

V. ACKNOWLEDGMENTS

The authors would like to thank Navin Kashyap for useful discussions and Jaydev Acharya for sharing a draft version of [6].

APPENDIX A

The PML Estimate as an ML Estimate of the Canonical TPM

We now show that the the PML estimate is the canonical TPM that maximizes the probability of occurrence of the observed pattern, and that the initial distribution of the DTMC is not relevant. Let \(\hat{P} \) be the transition matrix of the DTMC, and \(P = (p_{i,j})_{i,j} \) denote the canonical matrix corresponding to \(\hat{P} \). We obtain \(P \) by a permutation of the states. Let \(\sigma \) denote this permutation. Let \(\pi \) be a pmf on \([k] \). Here, \(\pi \) denotes the initial distribution, and is not necessarily a stationary measure. Given a sequence \(x \), let \(\hat{p}_{i,j}^{(l)} \) be the multiplicity matrix corresponding to \(\psi = \psi(x) \). Let \(K \) denote the set of all permutations of \([k] \). Then, the probability of observing \(\psi \) is given by \(\Pr[\psi|P,\pi] = \sum_{\sigma \in K} \pi_{\sigma(1)} \prod_{(i,j) \in [k] \times [k]} \hat{p}_{\sigma(i),\sigma(j)}^{(l)} \).

The ML estimate of \(P \) is the canonical matrix that maximizes the likelihood function,

\[
L(P|\psi) \triangleq \int \prod_{\pi \in \Pi} \frac{1}{\pi} \pi_{\sigma(1)} \prod_{(i,j) \in [k] \times [k]} \hat{p}_{\sigma(i),\sigma(j)}^{(l)} d\nu(\pi),
\]

where we assume a uniform prior on \(\pi \), i.e., \(\nu(\pi) \) is the uniform measure on the \((k-1)\)-simplex. Maximizing the above with respect to \(P \) turns out to be equivalent [11] to maximizing \(L'(P|\psi) \triangleq \sum_{\sigma \in K} \prod_{(i,j) \in [k] \times [k]} \hat{p}_{\sigma(i),\sigma(j)}^{(l)} \).

Therefore, the PML distribution gives the ML estimate of the canonical TPM.

REFERENCES