Lecture 28: Random walks

1 GI/GI/1 Queueing Model

Consider a GI/GI/1 queue. Customers arrive in accordance with a renewal process having an arbitrary interarrival distribution \(F \), and the service distribution \(G \).

Proposition 1.1. Let \(D_n \) be the delay in the queue of the \(n \)th customer in a GI/GI/1 queue with independent inter-arrival times \(X_n \) and service times \(Y_n \). Let \(S_n \) be a random walk with iid steps \(U_n = Y_n - X_{n+1} \) for all \(n \in \mathbb{N} \). Then, we can write

\[
\Pr\{D_n + 1 \geq c\} = \Pr\{S_j \geq c, \text{ for some } j \in [n]\}. \tag{1}
\]

Proof. The following recursion for \(D_n \) is easy to verify

\[
D_{n+1} = (D_n + Y_n - X_{n+1})1_{\{D_n + Y_n - X_{n+1} \geq 0\}} = \max\{0, D_n + U_n\}
\]

Iterating the above relation with \(D_1 = 0 \) yields

\[
D_{n+1} = \max\{0, U_n + \max\{0, D_{n-1} + U_{n-1}\}\} = \max\{0, U_n, U_n + U_{n-1} + D_{n-1}\}
\]

For the random walk \(S_n \) with steps \(U_n \), we can write delay in terms of random walk \(S_n \) as

\[
D_{n+1} = \max\{0, S_n - S_{n-1}, S_n - S_{n-2}, \ldots, S_n - S_0\}
\]

Using the duality principle, we can rewrite the following equality for delay in distribution

\[
D_{n+1} = \max\{0, S_1, S_2, \ldots, S_n\}.
\]

\(\square \)

Corollary 1.2. If \(E[U_n] \geq 0 \), then for all \(c \), we have \(\Pr\{D_\infty \geq c\} = \lim_{n \to \infty} \Pr\{D_n \geq c\} = 1 \).

Proof. It follows from Proposition 1.1 that \(\Pr\{D_{n+1} \geq c\} \) is nondecreasing in \(n \). Hence, by MCT the limit exists and is denoted by \(\Pr\{D_\infty \geq c\} = \lim_{n \to \infty} \Pr\{D_n \geq c\} \). Therefore, by continuity of probability, we have from (1), that

\[
\Pr\{D_\infty \geq c\} = \Pr\{S_n \geq c \text{ for some } n\}. \tag{2}
\]

If \(E[U_n] = E[Y_n] - E[X_{n+1}] \) is positive, then by strong law of large numbers the random walk \(S_n \) will converge to positive infinity with probability 1. The above will also be true when \(E[U_n] = 0 \), then the random walk is recurrent.

Remark 1.3. Hence, we get that \(E[Y_n] < E[X_{n+1}] \) implies the existence of a stationary distribution.
Proposition 1.4 (Spitzer’s Identity). Let $M_n = \max\{0, S_1, S_2, \ldots, S_n\}$ for $n \in \mathbb{N}$, then

$$\mathbb{E}M_n = \sum_{k=1}^{n} \frac{1}{k} \mathbb{E}S_k^+.$$

Proof. We can decompose M_n as

$$M_n = 1_{\{S_n > 0\}}M_n + 1_{\{S_n \leq 0\}}M_n.$$

We can rewrite first term in decomposition as,

$$1_{\{S_n > 0\}}M_n = 1_{\{S_n > 0\}} \max_{i \in [n]} S_i = 1_{\{S_n > 0\}}(X_1 + \max\{0, S_2 - S_1, \ldots, S_n - S_1\})$$

Hence, taking expectation and using exchangeability, we get

$$\mathbb{E}[M_n 1_{\{S_n > 0\}}] = \mathbb{E}[X_1 1_{\{S_n > 0\}}] + \mathbb{E}[M_{n-1} 1_{\{S_n > 0\}}].$$

Since X_i, S_n has the same joint distribution for all i,

$$\mathbb{E}S_n^+ = \mathbb{E}[S_n 1_{\{S_n > 0\}}] = \mathbb{E}\sum_{i=1}^{n} X_i 1_{\{S_n > 0\}} = n\mathbb{E}[X_1 1_{\{S_n > 0\}}].$$

Therefore, it follows that

$$\mathbb{E}[1_{\{S_n > 0\}}M_n] = \mathbb{E}[1_{\{S_n > 0\}}M_{n-1}] + \frac{1}{n}\mathbb{E}[S_n^+].$$

Also, $S_n \leq 0$ implies that $M_n = M_{n-1}$, it follows that

$$1_{\{S_n \leq 0\}}M_n = 1_{\{S_n \leq 0\}}M_{n-1}.$$

Thus, we obtain the following recursion,

$$\mathbb{E}[M_n] = \mathbb{E}[M_{n-1}] + \frac{1}{n}\mathbb{E}[S_n^+].$$

Result follow from the fact that $M_1 = S_1^+$. \qed

Remark 1.5. Since $D_{n+1} = M_n$, we have $\mathbb{E}[D_{n+1}] = \mathbb{E}[M_n] = \sum_{k=1}^{n} \frac{1}{k}\mathbb{E}[S_k^+]$.

2 Martingales for Random Walks

Proposition 2.1. A random walk S_n with step size $X_n \in [-M, M] \cap \mathbb{Z}$ for some finite M is a recurrent DTMC iff $\mathbb{E}X = 0$.

Proof. If $\mathbb{E}X \neq 0$, the random walk is clearly transient since, it will diverge to $\pm \infty$ depending on the sign of $\mathbb{E}X$. Conversely, if $\mathbb{E}X = 0$, then S_n is a martingale. Assume that the process starts in state i. We define

$$A = \{-M, -M + 1, \ldots, -2, -1\}, \quad A_j = \{j + 1, \ldots, j + M\}, \quad j > i.$$

Let N denote the hitting time to A or A_j by random walk S_n. Since N is a stopping time and $S_{N/n} \leq |M| + j$, by optional stopping theorem, we have

$$\mathbb{E}_i[S_N] = \mathbb{E}_i[S_0] = i.$$
Thus we have

\[i = \mathbb{E}[S_N] \geq -M\mathbb{P}_i\{S_N \in A\} + j(1 - \mathbb{P}_i\{S_N \in A\}). \]

Rearranging this, we get a bound on probability of random walk \(S_n \) hitting \(A \) over \(A_j \) as

\[\mathbb{P}_i\{S_n \in A \text{ for some } n\} \geq \frac{j - i}{j + M}. \]

Taking limit \(j \to \infty \), we see that for any \(i \geq 0 \), we have

\[\mathbb{P}_i\{S_n \in A \text{ for some } n\} = 1. \]

Similarly, taking \(B = \{1, 2, \cdots, M\} \), we can show that for any \(i \geq 0 \), \(\mathbb{P}_i\{S_n \in B \text{ for some } n\} = 1 \). Result follows from combining the above two arguments to see that for any \(i \geq 0 \),

\[\mathbb{P}_i\{S_n \in A \cup B \text{ for some } n\} = 1. \]

Proposition 2.2. Consider a random walk \(S_n \) with mean step size \(\mathbb{E}[X] \neq 0 \). For \(A, B > 0 \), let \(P_A \) denote the probability that the walk hits a value greater than \(A \) before it hits a value less than \(-B \). Then, for \(\theta \neq 0 \) such that \(\mathbb{E}e^{\theta X_1} = 1 \), we have

\[P_A \approx 1 - e^{-\theta B} e^{\theta A}. \]

Approximation is an equality when step size is unity and \(A \) and \(B \) are integer valued.

Proof. For any \(A, B > 0 \), we can define stopping times

\[T_A = \inf\{n \in \mathbb{N} : S_n \geq a\}, \quad T_{-B} = \inf\{n \in \mathbb{N} : S_n \leq -B\}. \]

We are interested in computing the probability

\[P_A = \Pr\{T_A < T_{-B}\}. \]

Now let \(Z_n = e^{\theta S_n} \). We can see that \(Z_n \) is a martingale with mean 1. Define a stopping time \(N = T_A \wedge T_{-B} \). From Doob’s Theorem, \(\mathbb{E}[e^{\theta N}] = 1 \). Thus we get

\[1 = \mathbb{E}[e^{\theta S_N}|S_N \geq A]P_A + \mathbb{E}[e^{\theta S_N}|S_N \leq -B](1 - P_A). \]

We can obtain an approximation for \(P_A \) by neglecting the overshoots past \(A \) or \(-B \). Thus we get

\[\mathbb{E}[e^{\theta S_N}|S_N \geq A] \approx e^{\theta A}, \quad \mathbb{E}[e^{\theta S_N}|S_N \leq -B] \approx e^{-\theta B}. \]

The result follows.