Lecture-14 : Embedded Markov Chain and Holding Times

1 State Evolution

For a Markov process on countable state space \(\mathcal{X} \) that is right continuous with left limits (rcll), we wish to know following probabilities

\[
P_{ij}(s,s+t) = P(X(s+t) = j | X(s) = i, \mathcal{F}_s), \quad s,t \geq 0.
\]

To this end, we define the sojourn time in any state, the jump times, and the jump transition probabilities.

1.1 Jump and sojourn times

The **jump times** of a right continuous stochastic process \((X(t), \ t \geq 0) \) are defined as

\[
S_0 = 0, \quad S_n \triangleq \inf\{t > S_{n-1} : X(t) \neq X(S_{n-1})\}.
\]

The **sojourn time** of this process staying in state \(X(S_{n-1}) \) is \(T_n \triangleq (S_n - S_{n-1}) \). We denote the state of the process at \(n \)th stopping time \(S_n \) as \(X_n \triangleq X(S_n) \). It follows that \(\mathcal{F}_n = \sigma((X_n, S_n) : S_n \leq t < S_{n+1}) \). In particular, we have \(\mathcal{F}_{S_n} = \sigma((X_t, S_t) : 0 \leq t \leq n) \).

Lemma 1.1. Jump times \((S_n : n \in \mathbb{N}) \) are stopping times with respect to the process \((X(t), \ t \geq 0) \).

Proof. It is clear that \(\{S_n \leq t\} \) is completely determined by the history \(\mathcal{F}_t = \sigma(X(u), u \leq t) \) until time \(t \). \(\square \)

Lemma 1.2. For a homogeneous CTMC, each sojourn time \(T_n \) is a continuous memoryless random variable, and the sequence of sojourn times \((T_j : j \geq n) \) is independent of the past \(\mathcal{F}_{S_{n-1}} \) conditioned on \(X_{S_{n-1}} \).

Proof. We observe that the sojourn time \(T_n \) equals the excess time \(Y(S_{n-1}) \) in state \(X(S_{n-1}) \) starting at time \(S_{n-1} \).

Using the strong Markov property, we can write the conditional complementary distribution of \(T_n \) given \(\mathcal{F}_{S_{n-1}} \) as

\[
\Pr(T_n > y | X_{S_{n-1}} = i, \mathcal{F}_{S_{n-1}}) = \Pr(Y(S_{n-1}) > y | X_{S_{n-1}} = i, \mathcal{F}_{S_{n-1}}) = \exp(-y \nu_i) = F_t(y), \ y \geq 0.
\]

Corollary 1.3. If \(X_0 = i \), then the random variable \(T_{n+1} \) has an exponential random distribution with rate \(\nu_i \).

Inverse of mean sojourn time in state \(i \) is called the **transition rate** out of state \(i \) denote by \(\nu_i = (\mathbb{E}T_i)^{-1} \).

Recall that a state \(i \) is instantaneous if \(\nu_i = \infty \), stable if \(0 < \nu_i < \infty \), and absorbing if \(\nu_i = 0 \). Let \(N(t) \) be the counting process associated with jump times sequence \((S_n : n \in \mathbb{N}) \). That is, the number of jumps in \((0,t] \) is

\[
N(t) = \sum_{n \in \mathbb{N}} 1\{S_n \leq t\}.
\]

Proposition 1.4. For a homogeneous pure jump CTMC such that \(\inf_{i \in \mathcal{X}} \nu_i \geq \nu > 0 \) (that is all the states are stable), then the jump times are almost surely finite stopping times.

Proof. We observe that the jump times are sum of independent exponential random variables. Further by coupling, we can have a sequence of \(iid \) random variables \((T_n : n \in \mathbb{N}) \), such that \(T_n \leq T_n \) and \(\mathbb{E}T_n = 1/\nu \) for each \(n \in \mathbb{N} \). Hence, we have

\[
S_n = \sum_{i=1}^{n} T_i \leq \sum_{i=1}^{\infty} \bar{T}_i \triangleq \bar{S}_n.
\]

Result follows since \(\bar{S}_n \) is the \(n \)th arrival instant of a Poisson process with rate \(\nu \). \(\square \)
1.2 Jump process

The jump process is a discrete time process \(\{X_n = X(S_n) : n \in \mathbb{N}_0\} \) derived from the continuous time stochastic process \((X(t), t \geq 0)\) by sampling at jump times. This is also sometimes referred to as the embedded DTMC of the pure jump CTMC \((X(t), t \geq 0)\). The corresponding jump transition probabilities are defined

\[
p_{ij} = P_i(S_n-1, S_n) = \Pr(X(S_n) = j | X(S_{n-1}) = i), \quad i, j \in \mathcal{X}.
\]

From the strong Markov property and the time-homogeneity of the CTMC \(X\), we see that \(P_{ij}(S_n-1, S_n) = P_{ij}(0, T_1)\).

Lemma 1.5. For any right continuous left limits stochastic process, the sum of jump transition probabilities \(\sum_{j \neq i} P_{ij}(S_{n-1}, S_n) = 1\) for all \(X(S_{n-1}) = i \in \mathcal{X}\).

Proof. It follows from law of total probability. \(\square\)

Lemma 1.6. For a homogeneous CTMC, the jump probability from state \(X(S_{n-1})\) to state \(X(S_n)\) depend solely on \(X(S_{n-1})\) and is independent of jump instants.

Proof. We can write the joint probability of \(X_n = j\) and \(T_n > x\) for any \(x \in \mathbb{R}_+\) conditioned on \(X_{n-1} = i\) and history \(\mathcal{F}_{S_{n-1}}\) for any states \(i, j \in \mathcal{X}\), using the definition of excess time \(Y(t) = S_{N(t)+1} - t\), the strong Markov property and time-homogeneity of CTMC \(X\), and memoryless property of excess time \(Y\), as

\[
P(T_n > x, X_n = j | X_{n-1} = i, \mathcal{F}_{S_{n-1}}) = P(X(x + Y(x)) = j | X(x) = i)P(Y(0) > x | X(0) = i) = P_{ij}(T_1)F(x).
\]

Result follows, since the only solution to this equation is \(P_{ij}(T_n) = P_{ij}(0)\). Hence, we can write

\[
P(T_n > x, X_n = j | X_{n-1} = i) = p_{ij}e^{-\nu_0 x}.
\]

This implies that sojourn times and jump instant probabilities are independent. \(\square\)

Corollary 1.7. The matrix \(P = (p_{ij} : i, j \in \mathcal{X})\) is stochastic, and if \(v_i > 0\) then \(p_{ii} = 0\).

Proof. Recall \(p_{ij} = p_{ij}(S_1)\). If \(v_i > 0\), then \(\lim_{u \to \infty} P(Y(0) > u | X(0) = i) = 0\), and hence \(S_1\) is finite almost surely. By definition \(X(S_1) \neq X(0) = i\), and hence \(p_{ii} = 0\). \(\square\)

Remark. If \(v_i = 0\), then for any \(u > 0\), we have \(P(Y(0) > u | X(0) = i) = 1\), and hence \(S_1 = \infty\) almost surely whenever \(X(0) = i\). By convention, we set \(p_i = 1\) and \(p_{ij} = 0\) for \(j \neq i\).

Theorem 1.8. For a pure jump CTMC \((X(t), t \geq 0)\) on state space \(\mathcal{X}\), if \(S_n\) is a proper stopping time for some \(n \in \mathbb{N}\). Then for all states \(i, j \in \mathcal{X}\) and duration \(u \geq 0\), we have

\[
P(T_{n+1} > u, X_{n+1} = j | X_0, \ldots, X_n = i, S_0, \ldots, S_n) = p_{ij}e^{-\nu_0 u}.
\]

Proof. Since the history of the process until stopping time \(S_n\) is given by \(\mathcal{F}_{S_n} = \sigma((X_i, S_i) : 0 \leq i \leq n)\), using strong Markov property and time-homogeneity of the CTMC \(X\), we have

\[
P(T_{n+1} > u, X_{n+1} = j | X_0, \ldots, X_n = i, S_0, \ldots, S_n) = P(T_{n+1} > u, X_{n+1} = j | \mathcal{F}_{S_n}, X_n = i) = P(S_1 > u, X_1 = j).
\]

The result follows from the previous Lemma 1.6. \(\square\)

Corollary 1.9. For a time-homogeneous CTMC, the transition probabilities \((p_{ij} : i, j \in \mathcal{X})\) and sojourn times \((T_n : n \in \mathbb{N})\) are independent.

Corollary 1.10. The jump process is a homogeneous Markov chain with countable state space \(\mathcal{X}\).

Example 1.11 (Poisson process). For a Poisson process with time-homogeneous rate \(\lambda\), the countable state space is \(\mathbb{N}_0\), and transition rate \(v_i = \lambda\) for each \(i \in \mathbb{N}\). This follows from the memoryless property of exponential random variables, that

\[
P(Y(u) > t | N(u) = i) = P(S_1 > t) = e^{-\lambda t}.
\]

Further, the embedded Markov chain or the jump process is given by the initial state \(N(0) = 0\) and the transition probability matrix \(P = (p_{ij} : i, j \in \mathbb{N}_0)\) where \(p_{i+1} = 1\) and \(p_{ij} = 0\) for \(j \neq i+1\). This follows from the definition of \(T_1\), since \(p_{ij} = P(N(T_1) = j | N(0) = i) = 1_{(j=i+1)}\).
1.3 Alternative construction of CTMC

Let \((X_n : n \in \mathbb{N})\) be a discrete time Markov chain with a countable state space \(\mathcal{X}\), and the transition probability matrix \(P = (p_{ij} : i, j \in \mathcal{X})\) a stochastic matrix. Further, we let \((v_i \in \mathbb{R}_+ : i \in \mathcal{X})\) be the set of transition rates such that \(p_{ii} = 0\) if \(v_i > 0\). For any initial state \(X(0) \in \mathcal{X}\), we can define a rcll piece-wise constant stochastic process \(X(t)\) inductively as

\[X(t) = X_{n-1}, \quad t \in [S_{n-1}, S_n), \]

where \(S_0 = 0\) and \(S_n = \sum_{i=1}^{n} T_i\), where the \(n\)th transition time \(T_n\) is distributed exponentially with rate \(v_i\) if \(X_{n-1} = i\). Further, conditioned on \(X_{n-1} = i\), the transition times \((T_1, \ldots, T_n)\) and \((T_j : j \geq n)\) are mutually independent. From the definition, the process is sample-path wise right-continuous with left limits, and has countable state space. We observe that the history of the process until time \(t\) is given by \(\mathcal{F}_t = \sigma(X_n, S_n : S_n \leq t)\). We define the the number of transitions until time \(t\) by

\[N(t) = \sum_{n \in \mathbb{N}} I_{\{S_n \leq t\}}. \]

A necessary condition for the process \(X\) to be defined on index set \(n \in \mathbb{N}_+\), is that for each \(t \geq 0\), there exists an \(n\) such that \(S_n < t < S_{n+1}\). That is, \(P\{N(t) < \infty\} = 1\) for all \(t \in \mathbb{R}_+\). This is equivalent to \(P\{S_n = \infty\} = 1\), or \(P\{S_n < \infty\} = 0\). Let \(\omega \in \{S_n < \infty\}\), then we can’t define the process for \(t > S_n\). A pure-jump CTMC \((X(t), t \geq 0)\) is called regular if \(P\{N(t) < \infty\} = 1\) for all \(t \in \mathbb{R}_+\).

Lemma 1.12. A homogeneous CTMC is regular if \(\sup_{i \in \mathcal{X}} v_i < v < \infty\).

Proof. By coupling, we can have a sequence of iid random variables \((T_n : n \in \mathbb{N})\), such that \(T_n \leq T_n\) and \(\sum T_n = v\) for each \(n \in \mathbb{N}\). Let \(m(t)\) be the associated renewal function with the sequence \(T_n\) then we can write

\[P\{N(t) < \infty\} = \sum_{n \in \mathbb{N}_0} P\{S_n \geq t\} = 1 + m(t) \leq 1 + m(t). \]

Since the inter-renewal times have finite means, \(m(t)\) is finite, and the result follows.

Example 1.13 (Non-regular CTMC). For the countable state space \(\mathbb{N}\), consider the probability transition matrix \(P\) such that \(p_{i,i+1} = 1\) and the exponential holding times with rate \(v_i = i^2\) for each state \(i \in \mathbb{N}\). Clearly, \(\sup_{i \in \mathbb{N}} v_i = \infty\), and hence it is not regular.

Lemma 1.14. Conditioned on the process state at the beginning of an interval, the increments of the counting process \((N(t), t \geq 0)\) is independent of the past, and depends only on the duration of the increment. That is,

\[P\{N(s,t) = k | X(s) = i, \mathcal{F}_s\} = P\{N(t-s) = k | X(0) = i\}. \]

Proof. From the independence of inter-transition times, we know that \(T_{N(i)+j}\) is independent of \(\mathcal{F}_s\) for \(j \geq 2\) conditioned on the process state \(X(s) = i\). Further, from the memoryless property of an exponential random variable, we have the excess time \(Y(s)\) independent of the age \(A(s)\) conditioned on the process state \(X(s) = i\). In addition, conditioned on \(X(s) = i\), the distribution of \((Y(s), T_{N(i)+2}, \ldots, T_{N(i)+k})\) is same as that of the inter-transition times \((S_1, S_2, \ldots, S_k)\) with initial state \(X(0) = i\). Hence, we can write the conditional probability of increment \(N(s,t)\) for \(t > s\), as

\[P\{N(s,t) = k | X(s) = i, \mathcal{F}_s\} = P\{Y(s) + \sum_{i=0}^{N(s)+k} T_i \leq t | X(s) = i, \mathcal{F}_s\} = P\{N(t-s) = k\}. \]

Proposition 1.15. The stochastic process \((X(t), t \geq 0)\) is a time-homogeneous CTMC.

Proof. For state \(i, j \in \mathcal{X}\), we can write the probability of process being in state \(j\), conditioned on the past

\[P(X(t) = j | X(s) = i, \mathcal{F}_s) = \sum_{k \in \mathbb{N}_0} P\{X(t) = j, N(s,t) = k | X(s) = i, \mathcal{F}_s\}. \]

Using the previous Lemma and definition of conditional probability, we can write for each \(k \in \mathbb{N}\),

\[P(X(t) = j, N(s,t) = k | X(s) = i, \mathcal{F}_s) = p_{ij}^{(k)} P\{N(t-s) = k\} = P\{X(t-s) = j, N(t-s) = k\}. \]

Theorem 1.16. A rcll stochastic process \((X(t) \in \mathcal{X}, t \geq 0)\) defined on countable state space \(\mathcal{X}\) is a CTMC iff

1. sojourn times are independent and exponentially distributed with rate \(v_i\), where \(X(S_n-1) = i\), and
2. jump transition probabilities \(p_{ij} = P_{ij}(S_n-1, S_n)\) are independent of jump times \(S_n\) such that \(\sum_{i \neq j} p_{ij} = 1\).