1 Conditional Distribution of Arrivals

A Poisson process is not a stationary process. That is, the finite dimensional distributions are not shift invariant. This is clear from looking at the first moment, which is a function of time.

Lemma 1.1. For any finite time \(t > 0 \), a Poisson process is finite almost surely.

Proof. By strong law of large numbers, we have

\[
\lim_{n \to \infty} \frac{S_n}{n} = E[X] = \frac{1}{\lambda} \quad \text{a.s.}
\]

Fix \(t > 0 \) and let \(M = \{ \omega \in \Omega : N(t)(\omega) = \infty \} \) be a subset of the sample space. Let \(\omega \in M \), then \(\text{Sn}(\omega) \leq t \) for all \(n \in \mathbb{N} \). This implies \(\limsup_n \frac{S_n}{n} = 0 \) and \(\omega \not\in \{ \lim_n \frac{S_n}{n} = \frac{1}{\lambda} \} \). Hence, the probability measure for set \(M \) is zero. \(\Box \)

Proposition 1.2 (Characterization 2). Let \(\{I_i \subseteq \mathbb{R}_+: i \in [k]\} \) be a finite collection of disjoint intervals. A stationary independent increment simple point process \(\{N(t) : t \geq 0\} \), such that \(N(0) = 0 \) is Poisson process iff

\[
P\bigcap_{i=1}^{k} \{N(I_i) = n_i\} = \prod_{i=1}^{k} \left(\frac{\lambda |I_i|^n}{n!} \right) e^{-\lambda |I_i|}.
\]

Proposition 1.3. Let \(\{N(t) : t \geq 0\} \) be a Poisson process with \(\{I_i \subseteq \mathbb{R}_+: i \in [n]\} \) a set of finite disjoint intervals with \(I = \bigcup_{i \in [n]} I_i \), and \(\{k_i \in \mathbb{N}_0 : i \in [n]\} \) and \(k = \sum_{i \in [n]} k_i \). Then, we have

\[
P\{N(I) = k, i \in [n] | N(I) = k\} = k! \prod_{i \in [n]} \frac{1}{k_i!} \left(\frac{|I_i|^{k_i}}{|I|} \right).
\]

Proof. It follows from the stationary independent increment property of Poisson processes that

\[
P\{N(I) = k, i \in [n] | N(I) = k\} = \frac{P\bigcap_{i \in [n]} N(I_i) = k_i}{P\{N(I) = k\}} = \frac{\prod_{i \in [n]} P\{N(I_i) = k_i\}}{P\{N(I) = k\}}.
\]

\(\Box \)

Proposition 1.4. For a Poisson process \(\{N(t) : t \geq 0\} \), distribution of first arrival instant \(S_1 \) conditioned on \(\{N(t) = 1\} \) is uniform between \([0, t]\).

Proof. If \(N(t) = 1 \), then we know that conditional distribution of \(S_1 \) is supported on \([0, t)\). By Proposition 1.3 we see that

\[
P\{S_1 \leq s | N(t) = 1\} = P\{N(s) = 1, N(t-s) = 0 | N(t) = 1\} \{s < t\} + P\{N(1) = 1\} \{s \geq t\} = \frac{s}{t} \{s < t\} + 1 \{s \geq t\}.
\]

\(\Box \)
Proposition 1.5. For a Poisson process \(\{N(t), t \geq 0\} \), joint distribution of arrival instant \(\{S_1, \ldots, S_n\} \) conditioned on \(\{N(t) = n\} \) is identical to joint distribution of order statistics of iid uniformly distributed random variables between \([0, t]\).

Proof. Let \(\{s_0 = 0 < s_1 < s_2 < \ldots < s_n < t\} \) be a finite sequence of non-negative increasing numbers between 0 and \(t \). Then, by Proposition 1.3, we get

\[
P\{S_i \leq s_i, i \in [n] | N(t) = n\} = P\{N((0, s_i]) \geq i, i \in [n] | N(t) = n\}.
\]

Alternative proof. Let \(\{s_i \in (0, t) : i \in [n]\} \) be a sequence of increasing numbers. If we denote \(s_0 = 0 \), then we can write

\[
\bigcap_{i=1}^{n} \{S_i = s_i\} \cap \{N(t) = n\} \iff \bigcap_{i=1}^{n} \{X_i = s_i - s_{i-1}\} \cap \{X_{n+1} > t - s_n\}.
\]

Note that all the events on RHS are independent events. Therefore, it is easy to compute the joint distribution of \(\{S_1, \ldots, S_n\} \), as

\[
P\bigg[\bigcap_{i=1}^{n} \{S_i \leq s_i\} \cap \{N(t) = n\} = \int_{0}^{s_1} dt_1 \cdots \int_{0}^{s_n} dt_n \prod_{i=1}^{n} \lambda \exp(-\lambda t_i) \exp(-\lambda (t - u_n)) = \lambda^n \exp(-\lambda t) \prod_{i=1}^{n} s_i.
\]

Since \(P\{N(t) = n\} = \exp(-\lambda t)(\lambda t)^n/n! \), it follows that

\[
P\{S_1 \leq s_1, \ldots, S_n \leq s_n | N(t) = n\} = \begin{cases} n! \prod_{i=1}^{n} \frac{s_i}{i} & s < t \\ 0 & s \geq t \end{cases}
\]

Let \(U_1, \ldots, U_n \) are iid Uniform random variables in \([0, t]\). Then, the order statistics of \(U_1, \ldots, U_n \) has an identical joint distribution to \(n \) arrival instants conditioned on \(\{N(t) = n\} \). \(\square \)

2. Age and excess time

Definition 2.1. For a point process \(\{N(t), t \geq 0\} \), we can define age process \(\{A(t), t \geq 0\} \) and excess time process \(\{Y(t), t \geq 0\} \) as

\[
A(t) = t - S_{N(t)}, \quad Y(t) = S_{N(t)+1} - t.
\]

Proposition 2.2. For a Poisson process with rate \(\lambda \), the corresponding age and excess time are both exponentially distributed with rate \(\lambda \) irrespective of time \(t \).

Proof. Using stationary independent increment property of Poisson process, we can write complementary distribution of excess time process as

\[
P\{Y(t) > y\} = \sum_{n \in \mathbb{N}_0} P\{Y(t) > y; N(t) = n\} = \sum_{n \in \mathbb{N}_0} P\{N(t+y) - N(t) = 0, N(t) = n\}
\]

\[
= P\{N(y) = 0\} \sum_{n \in \mathbb{N}_0} P\{N(t) = n\} = P\{N(y) = 0\}.
\]

2
Theorem 3.1 (Sum of Independent Poissons). Let \(\{N_1(t), t \geq 0\} \) and \(\{N_2(t), t \geq 0\} \) be two independent Poisson processes with rates \(\lambda_1 \) and \(\lambda_2 \) respectively. Then, the process \(\{N(t) = N_1(t) + N_2(t)\} \) is Poisson with rate \(\lambda_1 + \lambda_2 \).

Proof. We need to show that \(\{N(t)\} \) has stationary independent increments, and

\[
P\{N(t) = n\} = \exp\left(- (\lambda_1 + \lambda_2) t\right) \frac{(\lambda_1 + \lambda_2)^n t^n}{n!}.
\]

For two disjoint intervals \((t_1, t_2) \) and \((t_3, t_4) \), we can see that for both processes \(N_1(t) \) and \(N_2(t) \), arrivals in \((t_1, t_2) \) and \((t_3, t_4) \) are independent. Therefore, \(N(t) \) has independent increment property. Similarly, we can argue about the stationary increment property of \(\{N(t)\} \). Further, we can write

\[
\{N(t) = n\} = \bigcup_{k=0}^{n} \{\{N_1(t) = k\} \cap \{N_2(t) = n-k\}\}.
\]

Since \(N_1(t) \) and \(N_2(t) \) are independent, we can write

\[
P\{N(t) = n\} = \sum_{k=0}^{n} \exp(-\lambda_1 t) \frac{(\lambda_1 t)^k}{k!} \exp(-\lambda_2 t) \frac{(\lambda_2 t)^{n-k}}{(n-k)!} = \frac{\exp(- (\lambda_1 + \lambda_2) t)}{n!} \sum_{k=0}^{n} \binom{n}{k} \frac{\lambda_1^k \lambda_2^{n-k}}{k!}.
\]

Result follows by recognizing that summand is just binomial expansion of \([(\lambda_1 + \lambda_2) t]^n \). □

Remark 3.2. If independence condition is removed, the statement is not true.

Theorem 3.3 (Independent Splitting). Let \(\{N(t), t \geq 0\} \) be a Poisson arrival process. Each arrival can be randomly assigned to either arrival type 1 or 2, with probability \(p \) and \((1-p) \) respectively, independent of previous assignments. Arrival processes of type 1 and 2 are denoted by \(N_1(t) \) and \(N_2(t) \) respectively. Then, \(\{N_1(t), t \geq 0\} \) and \(\{N_2(t), t \geq 0\} \) are mutually independent Poisson processes with rates \(\lambda p \) and \(\lambda (1-p) \) respectively.

Proof. To show that \(N_1(t), t \geq 0 \) is a Poisson process with rate \(\lambda p \), we show that it is stationary independent increment process with the distribution

\[
P\{N_1(t) = n\} = \frac{(p \lambda t)^n}{n!} e^{-\lambda p t}.
\]
The stationary, independent increment property of the probabilistically filtered processes \(\{N_1(t), t \geq 0\} \) and \(\{N_2(t), t \geq 0\} \) can be understood and argued out from the example given in the figure. Notice that

\[
\{N_1(t) = k\} = \bigcup_{n=k}^{\infty} \{N(t) = n, N_1(t) = k\}.
\]

Further notice that conditioned on \(\{N(t) = n\} \), probability of event \(\{N_1(t) = k\} \) is merely probability of selecting \(k \) arrivals out of \(n \), each with independent probability \(p \). Therefore,

\[
P(N_1(t) = k) = \exp(-\lambda t) \sum_{n=k}^{\infty} \frac{\lambda^n}{n!} \left(\frac{1}{k}\right)^n (1-p)^{n-k},
\]

\[
= \exp(-\lambda t) \frac{(\lambda p)^k}{k!} \sum_{n=k}^{\infty} \frac{\lambda^n}{n!} (1-p)^{n-k}.
\]

Recognizing that infinite sum in RHS adds up \(\exp(\lambda(1-p)t) \), the result follows. We can find the distribution of \(N_2(t) \) by similar arguments. We will show that events \(\{N_1(t) = n_1\} \) and \(\{N_2(t) = n_2\} \) are
independent. To this end, we see that

$$\{N_1(t) = n_1, N_2(t) = n_2\} = \{N(t) = n_1 + n_2, N_1(t) = n_1\}.$$

Using their distribution for $N_1(t), N_2(t)$, and conditional distribution of $N_1(t)$ on $N(t)$, we can show that

$$P\{N_1(t) = n_1, N_2(t) = n_2\} = \exp(-\lambda t) \frac{(\lambda t)^{n_1 + n_2}}{(n_1 + n_2)!} \left(\frac{n_1 + n_2}{n_1}\right) p^{n_1} (1-p)^{n_2};$$

$$= P\{N_1(t) = n_1\} P\{N_2(t) = n_2\}.$$

In general, we need to show finite dimensional distributions factorize. That is, we need to show that for measurable sets $A_1, \ldots, A_n : j \in [m]$, we have

$$P\left(\bigcap_{i=1}^n \{N_1(t_i) \in A_i\} \bigcap_{j=1}^m \{N_2(s_j) \in B_j\} \right) = P\left(\bigcap_{i=1}^n \{N_1(t_i) \in A_i\} \right) P\left(\bigcap_{j=1}^m \{N_2(s_j) \in B_j\} \right).$$

\square