Lecture 04: Properties of Poisson Process

1 Characterizations of Poisson process

It is clear that \(t \) partitions \(X_{N(t)+1} \) in two parts such that \(X_{N(t)+1} = A(t) + Y(t) \) as seen in Figure ?? for the case when \(N(s) = n \).

![Figure 1: Stationary and independent increment property of Poisson process.](image)

Proposition 1.1. A Poisson process \(\{N(t), t \geq 0\} \) is simple counting process with stationary independent increments.

Proof. It is clear that Poisson process is a simple counting process. To show that \(N(t) \) has stationary and independent increments, it suffices to show that \(N(t) - N(s) \) is independent of \(N(s) \) and the distribution of increment \(N(t) - N(s) \) is identical to that of \(N(t-s) \). This follows from the fact that we can use induction to show stationary and independent increment property for any finite disjoint time-intervals.

We can write the distribution of \(N(t) - N(s) \) given \(N(s) \) in terms of the following events involving inter-arrival times and excess times as

\[
P\{N(t) - N(s) \geq m | N(s) = n\} = P\{Y(s) + S_{n+m} - S_{n+1} \leq t - s | S_n + A(s) = s\}.
\]

Further, we see that independent increment holds only if inter-arrival time is exponential. Since, \(\{X_i : i \geq n+2\} \cup \{Y(s)\} \) are independent of \(\{X_i : i \leq n\} \cup A(s) \), we have \(N(t) - N(s) \) independent of \(N(s) \). Further, since \(Y(s) \) has same distribution as \(X_{n+1} \), we get \(N(t) - N(s) \) having same distribution as \(N(t-s) \). By induction, we can extend this result to \((N(t_n) - N(t_{n-1}), ..., N(s)) \). \(\square \)
Theorem 1.2 (Characterization 1). A simple counting process with stationary and independent increment is a Poisson process with parameter λ when

$$\lim_{t \to 0} \frac{P\{N(t) = 1\}}{t} = \lambda, \quad \text{and} \quad \lim_{t \to 0} \frac{P\{N(t) \geq 2\}}{t} = 0.$$

Proof. It suffices to show that first inter-arrival times X_1 is exponentially distributed with parameter λ. Notice that, the probability $P_0(t)$ of no arrivals in a time duration $[0,t)$ satisfies the semi-group property. That is,

$$P_0(t + s) = P\{N(t + s) - N(t) = 0, N(t) = 0\} = P_0(t)P_0(s).$$

Using the conditions in the theorem, the result follows. \hfill \Box

Proposition 1.3 (Characterization 2). Let $\{I_i \subseteq \mathbb{R}_+ : i \in [k]\}$ be a finite collection of disjoint intervals. A stationary and independent increment simple counting process $\{N(t), t \geq 0\}$ with $N(0) = 0$ is Poisson process iff

$$P \left(\bigcap_{i=1}^{k} \{N(I_i) = n_i\} \right) = \prod_{i=1}^{k} \left(\frac{\lambda |I_i|^{n_i}}{n_i!} e^{-\lambda |I_i|} \right).$$

Proof. It is clear that Poisson process satisfies the above conditions. Further, since $P\{N(t) = 0\} = e^{-\lambda t}$, it follows that the counting process with stationary and independent increment is Poisson with rate λ. \hfill \Box

Proposition 1.4. Let $\{N(t), t \geq 0\}$ be a Poisson process with $\{I_i \subseteq \mathbb{R}_+ : i \in [n]\}$ a set of finite disjoint intervals with $I = \bigcup_{i \in [n]} I_i$, and $\{k_i \in \mathbb{N}_0 : i \in [n]\}$ and $k = \sum_{i \in [n]} k_i$. Then, we have

$$P\{N(I_i) = k_i, i \in [n]|N(I) = k\} = k! \prod_{i \in [n]} \frac{1}{k_i!} \left(\frac{|I_i|}{|I|} \right)^{k_i}.$$

Proof. It follows from the stationary and independent increment property of Poisson processes that

$$P\{N(I_i) = k_i, i \in [n]|N(I) = k\} = \frac{P\left(\bigcap_{i \in [n]} \{N(I_i) = k_i\} \right)}{P\{N(I) = k\}} = \frac{\prod_{i \in [n]} P\{N(I_i) = k_i\}}{P\{N(I) = k\}}.$$

1.1 Conditional distribution of arrivals

Proposition 1.5. For a Poisson process $\{N(t), t \geq 0\}$, distribution of first arrival instant S_1 conditioned on $\{N(t) = 1\}$ is uniform between $[0,t]$.

Proof. If $N(t) = 1$, then we know that conditional distribution of S_1 is supported on $[0,t)$. By Proposition 1.4, we see that

$$P\{S_1 \leq s|N(t) = 1\} = P\{N(s) = 1, N(t-s) = 0|N(t) = 1\} 1\{s < t\} + 1\{s \geq t\} = \frac{s}{t} 1\{s < t\} + 1\{s \geq t\} = s.$$

Proposition 1.6. For a Poisson process $\{N(t), t \geq 0\}$, joint distribution of arrival instant $\{S_1, \ldots, S_n\}$ conditioned on $\{N(t) = n\}$ is identical to joint distribution of order statistics of n iid uniformly distributed random variables between $[0,t]$.
Proof. Let \(\{s_i \in (0, t) : i \in [n]\} \) be a sequence of increasing numbers. If we denote \(s_0 = 0 \), then we can write
\[
\bigcap_{i=1}^{n} \{S_i = s_i\} \cap \{N(t) = n\} \iff \bigcap_{i=1}^{n} \{X_i = s_i - s_{i-1}\} \cap \{X_{n+1} > t - s_n\}.
\]
Note that all the events on RHS are independent. Hence, it is easy to compute the joint distribution of \(\{S_1, \ldots, S_n\} \) as
\[
P\left(\bigcap_{i=1}^{n} \{S_i \leq s_i\} \cap \{N(t) = n\}\right) = \int_{0}^{s_1} du_1 \cdots \int_{0}^{s_n} du_n \prod_{i=1}^{n} \lambda \exp(-\lambda(u_i - u_{i-1})) \exp(-\lambda(t - u_n))
\]
\[
= \lambda^n \exp(-\lambda t) \prod_{i=1}^{n} s_i.
\]
Since \(P\{N(t) = n\} = \exp(-\lambda t) (\lambda t)^n / n! \), it follows that
\[
P\{S_1 \leq s_1, \ldots, S_n \leq s_n | N(t) = n\} = \begin{cases} n! \prod_{i=1}^{n} \frac{s_i}{t} & s < t \\ 0 & s \geq t. \end{cases}
\]
Let \(U_1, \ldots, U_n \) be iid uniform random variables in \([0, t]\). Then, the order statistics of \(U_1, \ldots, U_n \) has an identical joint distribution to \(n \) arrival instants conditioned on \(\{N(t) = n\}\).

\[\square\]

2 Superposition and decomposition of Poisson processes

Theorem 2.1 (Sum of Independent Poissons). Let \(\{N_1(t), t \geq 0\} \) and \(\{N_2(t), t \geq 0\} \) be two independent Poisson processes with rates \(\lambda_1 \) and \(\lambda_2 \) respectively. Then, the process \(N(t) = N_1(t) + N_2(t) \) is Poisson with rate \(\lambda_1 + \lambda_2 \).

Proof. We need to show that \(\{N(t)\} \) has stationary independent increments, and
\[
P\{N(t) = n\} = \exp(- (\lambda_1 + \lambda_2) t) \frac{\lambda_1^n \lambda_2^n}{n!}.
\]
For two disjoint interval \((t_1, t_2)\) and \((t_3, t_4)\), we can see that for both processes \(N_1(t)\) and \(N_2(t)\), arrivals in \((t_1, t_2)\) and \((t_3, t_4)\) are independent. Therefore, \(N(t)\) has independent increment property. Similarly, we can argue about the stationary increment property of \(\{N(t)\} \). Further, we can write
\[
\{N(t) = n\} = \bigcup_{k=0}^{n} \left\{ \{N_1(t) = k\} \cap \{N_2(t) = n-k\} \right\}.
\]
Since \(N_1(t)\) and \(N_2(t)\) are independent, we can write
\[
P\{N(t) = n\} = \sum_{k=0}^{n} \exp(-\lambda_1 t) \frac{(\lambda_1 t)^k}{k!} \exp(-\lambda_2 t) \frac{(\lambda_2 t)^{n-k}}{(n-k)!}
\]
\[
= \frac{\exp(-(\lambda_1 + \lambda_2) t)}{n!} \sum_{k=0}^{n} \binom{n}{k} (\lambda_1 t)^k (\lambda_2 t)^{n-k}.
\]
Result follows by recognizing that summand is just binomial expansion of \((\lambda_1 + \lambda_2) t^n\).

Remark 2.2. If independence condition is removed, the statement is not true.
Figure 2: Splitting a Poisson process into two independent Poisson processes.

Theorem 2.3 (Independent Splitting). Let \(\{N(t), t \geq 0\} \) be a Poisson arrival process. Each arrival can be randomly assigned to either arrival type 1 or 2, with probability \(p \) and \((1 - p) \) respectively, independent of previous assignments. Arrival processes of type 1 and 2 are denoted by \(N_1(t) \) and \(N_2(t) \) respectively. Then, \(\{N_1(t), t \geq 0\} \) and \(\{N_2(t), t \geq 0\} \) are mutually independent Poisson processes with rates \(\lambda p \) and \(\lambda (1 - p) \) respectively.

Proof. To show that \(N_1(t), t \geq 0 \) is a Poisson process with rate \(\lambda p \), we show that it is stationary independent increment process with the distribution

\[
P\{N_1(t) = n\} = \frac{(p \lambda t)^n}{n!} e^{-\lambda pt}.
\]

The stationary, independent increment property of the probabilistically filtered processes \(\{N_1(t), t \geq 0\} \) and \(\{N_2(t), t \geq 0\} \) can be understood and argued out from the example given in the figure. Notice that

\[
\{N_1(t) = k\} = \bigcup_{n=k}^{\infty} \{N(t) = n, N_1(t) = k\}.
\]
Further notice that conditioned on \(\{ N(t) = n \} \), probability of event \(\{ N_1(t) = k \} \) is merely probability of selecting \(k \) arrivals out of \(n \), each with independent probability \(p \). Therefore,

\[
P\{ N_1(t) = k \} = \exp(-\lambda t) \sum_{n=0}^{\infty} \left(\frac{(\lambda t)^n}{n!} \right) p^n (1-p)^{n-k},
\]

\[
= \exp(-\lambda t) \left(\frac{(\lambda p)^k}{k!} \right) \sum_{n=k}^{\infty} \left(\frac{(\lambda (1-p)t)^{n-k}}{(n-k)!} \right).
\]

Recognizing that infinite sum in RHS adds up \(\exp(\lambda (1-p)t) \), the result follows. We can find the distribution of \(N_2(t) \) by similar arguments. We will show that events \(\{ N_1(t) = n_1 \} \) and \(\{ N_2(t) = n_2 \} \) are independent. To this end, we see that

\[
\{ N_1(t) = n_1, N_2(t) = n_2 \} = \{ N(t) = n_1 + n_2, N_1(t) = n_1 \}.
\]

Using their distribution for \(N_1(t), N_2(t) \), and conditional distribution of \(N_1(t) \) on \(N(t) \), we can show that

\[
P\{ N_1(t) = n_1, N_2(t) = n_2 \} = \exp(-\lambda t) \left(\frac{(\lambda t)^{n_1+n_2}}{(n_1+n_2)!} \right) \left(\frac{n_1+n_2}{n_1} \right) p^{n_1} (1-p)^{n_2},
\]

\[
= P\{ N_1(t) = n_1 \} P\{ N_2(t) = n_2 \}.
\]

In general, we need to show finite dimensional distributions factorize. That is, we need to show that for measurable sets \(A_1, \ldots, A_m : j \in [m] \), we have

\[
P\left(\bigcap_{j=1}^{m} \{ N_1(t_i) \in A_i \} \cap \bigcap_{j=1}^{m} \{ N_2(s_j) \in B_j \} \right) = P\left(\bigcap_{j=1}^{m} \{ N_1(t_i) \in A_i \} \right) P\left(\bigcap_{j=1}^{m} \{ N_2(s_j) \in B_j \} \right).
\]

\(\square \)

A Order statistics

For any \(n \) length sequence \(a \in \mathbb{R}^n \), the order statistics is a permutation \(\sigma : [n] \to [n] \) such that

\[
a_{\sigma(1)} \leq a_{\sigma(2)} \leq \cdots \leq a_{\sigma(n)}.
\]

For, \(k \in [n] \), we call \(a_{\sigma(k)} \) as the \(k \)th order statistic of the sequence \(a \). In particular, first order statistic is the minimum, and the \(n \)th order statistic is the maximum of a \(n \) length sequence.

Lemma A.1. Let \(X = (X_1, X_2, \ldots, X_n) \) be an \(n \) length sequence of iid random variables with common distribution and density functions \(F \) and \(f \) respectively. Then, the joint density of order statistics of sequence \(X \) for \(x \in \mathbb{R}^n \) is

\[
f_{x_{\sigma}}(x) = n! \prod_{i=1}^{n} f(x_i).
\]

Lemma A.2. Let \(X = (X_1, X_2, \ldots, X_n) \) be an \(n \) length sequence of iid random variables with common distribution and density functions \(F \) and \(f \) respectively. Then, the density function of \(k \)th order statistic of sequence \(X \) for \(x \in \mathbb{R} \) is

\[
f_{x_{\sigma(k)}}(x) = \binom{n}{k} F(x)^{k-1} F(x)^{n-k} f(x).
\]