Lecture-02: Probability Review

1 Probability Review

A probability space \((\Omega, \mathcal{F}, P)\) consists of a set of all possible outcomes denoted by \(\Omega\) and called a sample space, a collection of subsets \(\mathcal{F}\) of sample space called event space, and a non-negative set function probability \(P : \mathcal{F} \to [0,1]\), with the following properties:

1. Event space \(\mathcal{F}\) is a \(\sigma\)-algebra, that is it contains an empty set and is closed under complements and countable unions.

2. Set function \(P\) satisfies \(P(\Omega) = 1\), and is additive for countably disjoint events.

Example 1.1 (Discrete \(\sigma\)-algebra). For a finite sample space \(\Omega\), the event space \(\mathcal{F} = \{A : A \subseteq \Omega\}\) consists of all subsets of sample space \(\Omega\).

Example 1.2 (Borel \(\sigma\)-algebra). If the sample space \(\Omega = \mathbb{R}\), then a Borel \(\sigma\)-algebra is generated by half-open intervals by complements and countable unions. That is, \(\mathcal{B} = \sigma(\{(-\infty, x] : x \in \mathbb{R}\})\). We can see that \((x, \infty)\) belong to \(\mathcal{B}\) for each \(x \in \mathbb{R}\) by closure under complements. From closure under countable unions, we have open intervals \((-\infty, x) = \bigcup_{n \in \mathbb{N}} (-\infty, x - \frac{1}{n})\) also belonging to \(\mathcal{B}\). We can also show that singletons belong to \(\mathcal{B}\), since \(\{x\} = \bigcap_{n \in \mathbb{N}} [x - \frac{1}{n}, \infty) \cap (-\infty, x + \frac{1}{n}]\).

There is a natural order of inclusion on sets through which we can define monotonicity of probability set function \(P\). To define continuity of this set function, we define limits of sets. For a sequence of sets \(\{A_n : n \in \mathbb{N}\}\), we define limit superior and limit inferior of this set sequence respectively as

\[
\limsup_{n} A_n = \bigcup_{n \geq k} A_k, \quad \liminf_{n} A_n = \bigcap_{n \geq k} A_k.
\]

It is easy to check that \(\liminf A_n \subseteq \limsup A_n\). We say that limit of set sequence exists if \(\limsup A_n \subseteq \liminf A_n\), and the limit of the set sequence in this case is \(\limsup A_n\).

Theorem 1.3. Probability set function is monotone and continuous.

Proof. Let \(A \subseteq B\) both subsets be elements of \(\mathcal{F}\), then from the additivity of probability over disjoint sets \(A\) and \(B \setminus A\), we have

\[
P(B) = P(A \cup B \setminus A) = P(A) + P(B \setminus A) \geq P(A).
\]

Monotonicity follows from non-negativity of probability set function, that is since \(P(B \setminus A) > 0\). For continuity from below, we take an increasing sequence of sets \(\{A_n : n \in \mathbb{N}\}\), such that \(A_n \subseteq A_{n+1}\) for all \(n\). Then, it is clear that \(A_n \uparrow A = \bigcup_{n \in \mathbb{N}} A_n\). We can define disjoint sets \(\{E_n : n \in \mathbb{N}\}\), where

\[
E_1 = A_1, \quad E_n = A_n \setminus A_{n-1}, \quad n \geq 2.
\]

The disjoint sets \(E_n\)’s satisfy \(\bigcup_{i=1}^n E_i = A_n\) for all \(n \in \mathbb{N}\) and \(\bigcup_{n \in \mathbb{N}} E_n = \bigcup_{n \in \mathbb{N}} A_n\). From the above property and the additivity of probability set function over disjoint sets, it follows that

\[
P(A) = P \cup_{n} E_n = \sum_{n \in \mathbb{N}} P(E_n) = \lim_{n \in \mathbb{N}} \sum_{i=1}^n P(E_i) = \lim_{n \in \mathbb{N}} P \cup_{i=1}^n E_i = \lim_{n \in \mathbb{N}} P(A_n).
\]

For continuity from below, we take decreasing sequence of sets \(\{A_n : n \in \mathbb{N}\}\), such that \(A_{n+1} \subseteq A_n\) for all \(n\). We can form increasing sequence of sets \(\{B_n : n \in \mathbb{N}\}\) where \(B_n = A_n^c\). Then, the continuity from above follows from continuity from above.
2 Random variables

A real valued random variable X on a probability space (Ω, \mathcal{F}, P) is a function $X : \Omega \to \mathbb{R}$ such that for every $x \in \mathbb{R}$, we have $\{ \omega \in \Omega : X(\omega) \leq x \} = X^{-1}(-\infty,x] \subseteq \mathcal{F}$. That is, $X^{-1}(\mathbb{B}) \subseteq \mathcal{F}$. The distribution function $F : \mathbb{R} \to [0,1]$ for this random variable X is defined as $F(x) = (P \circ X^{-1})(-\infty,x], \forall x \in \mathbb{R}$.

Theorem 2.1. Distribution function F of a random variable X is non-negative, monotone increasing, continuous from the right, and has countable points of discontinuities. Further, if $P \circ X^{-1}(\mathbb{R}) = 1$, then

$$\lim_{x \to -\infty} F(x) = 0, \quad \lim_{x \to +\infty} F(x) = 1.$$

Proof. Non-negativity and monotonicity of distribution function follows from non-negativity and monotonicity of probability set function, and the fact that for $x_1 < x_2$

$$X^{-1}(-\infty,x_1] \subseteq X^{-1}(-\infty,x_2].$$

Let $x_n \downarrow x$ be a decreasing sequence of real numbers. Then, the right continuity of distribution function follows from the continuity from above of probability set functions. We take decreasing sets $\{ A_n : n \in \mathbb{N} \}$, where

$$A_n = \{ \omega \in \Omega : X(\omega) \leq x_n \}.$$

□

Example 2.2. One of the simplest random variables are indicator functions $1 : \mathcal{F} \times \Omega \to \{0,1\}$. For each event $A \in \mathcal{F}$, we can define an indicator function as

$$1_A(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A. \end{cases}$$

2.1 Expectation

Let $g : \mathbb{R} \to \mathbb{R}$ be a function. Then, the expectation of $g(X)$ for a random variable X with distribution function F is defined as

$$\mathbb{E} g(X) = \int_{x \in \mathbb{R}} g(x) dF(x).$$

Remark 1. Recall that probabilities are defined only for events. For a random variable X, the probabilities are defined for generating events $X^{-1}(-\infty,x] \subseteq \mathcal{F}$ by $F(x) = P \circ X^{-1}(-\infty,x].$

Remark 2. The expectation is only defined for random variables. For an event A, the probability $P(A)$ equals expectation of the indicator random variable 1_A.

3 Stochastic Processes

Let (Ω, \mathcal{F}, P) be a probability space. For an arbitrary index set T and state space $\mathcal{X} \subseteq \mathbb{R}$, a random process is a measurable map $X : (\Omega, T) \to \mathcal{X}$. For each $t \in T$, we have a random variable $X_t \triangleq \{X(t, \omega) : \omega \in \Omega\}$ defined on the probability space (Ω, \mathcal{F}, P), and random process X is a collection of random variables $(X_t \in \mathcal{X} : t \in T)$. For each $\omega \in \Omega$, the map $X_{t_\omega} \triangleq \{X_t(\omega) : t \in T\}$ denotes a sample path of the process X.

3.1 Classification

State space \mathcal{X} can be countable or uncountable, corresponding to discrete or continuous valued process. If the index set T is countable, the stochastic process is called discrete-time stochastic process or random sequence. When the index set T is uncountable, it is called continuous-time stochastic process. The index set T doesn’t have to be time, if the index set is space, and then the stochastic process is spatial process. When $T = \mathbb{R}^n \times [0,\infty)$, stochastic process $X(t)$ is a spatio-temporal process.
Example 3.1. We list some examples of each such stochastic process.

i. Discrete random sequence: brand switching, discrete time queues, number of people at bank each day.

ii. Continuous random process: stock prices, currency exchange rates, waiting time in queue of nth arrival, workload at arrivals in time sharing computer systems.

iii. Discrete random process: counting processes, population sampled at birth-death instants, number of people in queues.

iv. Continuous random process: water level in a dam, waiting time till service in a queue, location of a mobile node in a network.

3.2 Specification

To define a measure on a random process, we can either put a measure on sample paths, or equip the collection of random variables with a joint measure. We are interested in identifying the joint distribution of a stochastic process \(X_t \) for any finite set \(S \subseteq T \) we focus on the product sets of the form

\[
\bigotimes_{s \in S} (-\infty, x_s] \times \mathbb{R}.
\]

We can define a finite dimensional distribution for any finite set \(S \subseteq T \) and \(x_S = \{x_s \in \mathbb{R} : s \in S\} \),

\[
F_S(x_S) = P\left(\bigcap_{s \in S} \{\omega \in \Omega : X_s(\omega) \leq x_s\}\right) = P\left(\bigcap_{t \in T} X_t^{-1}(-\infty, x_t]\right).
\]

Set of all finite dimensional distributions of the stochastic process \(\{X_t : t \in T\} \) characterizes its distribution completely. Simpler characterizations of a stochastic process \(X(t) \) are in terms of its moments. That is, the first moment such as mean, and the second moment such as correlations and covariance functions.

\[
m_X(t) \triangleq \mathbb{E}X_t, \quad R_X(t, s) \triangleq \mathbb{E}X_tX_s, \quad C_X(t, s) \triangleq \mathbb{E}(X_t - m_X(t))(X_s - m_X(s)).
\]

Example 3.2. Some examples of simple stochastic processes.

i. \(X_t = A \cos 2\pi t \), where \(A \) is random.

ii. \(X_t = \cos(2\pi t + \Theta) \), where \(\Theta \) is random and uniformly distributed between \((-\pi, \pi]\).

iii. \(X_n = U^n \) for \(n \in \mathbb{N} \), where \(U \) is uniformly distributed in the open interval \((0, 1)\).

iv. \(Z_t = At + B \) where \(A \) and \(B \) are independent random variables.

3.3 Independence

Recall, given the probability space \((\Omega, \mathcal{F}, P)\), two events \(A, B \in \mathcal{F} \) are independent events if

\[
P(A \cap B) = P(A)P(B).
\]

Random variables \(X, Y \) defined on the above probability space, are independent random variables if for all \(x, y \in \mathbb{R} \), the events \(\{X \leq x\} \) and \(\{Y \leq y\} \) are independent. That is,

\[
P\{X(\omega) \leq x, Y(\omega) \leq y\} = P\{X(\omega) \leq x\}P\{Y(\omega) \leq y\}.
\]
A stochastic process \(X \) is said to be \textbf{independent} if for all finite subsets \(S \subseteq T \), we have
\[
P(\{X_s \leq x_s, s \in S\}) = \prod_{s \in S} P(X_s \leq x_s).
\]

Two stochastic processes \(X, Y \) for the common index set \(T \) are \textbf{independent random processes} if for all finite subsets \(I, J \subseteq T \)
\[
P(\{X_i \leq x_i, i \in I\} \cap \{Y_j \leq y_j, j \in J\}) = P(\{X_i \leq x_i, i \in I\})P(\{Y_j \leq y_j, j \in J\}).
\]

3.4 Filtration

A net of \(\sigma \)-algebras \(\mathcal{F}_t = \{\mathcal{F}_t \subseteq \mathcal{F} : t \in T\} \) is called a \textbf{filtration} when the index set \(T \) is totally ordered and the net is non-decreasing, that is for all \(s \leq t \) we have \(\mathcal{F}_s \subseteq \mathcal{F}_t \). Consider a real-valued random process \(X \) indexed by the ordered set \(T \) on the probability space \((\Omega, \mathcal{F}, P) \). The process \(X \) is called \textbf{adapted} to the filtration \(\mathcal{F}_\bullet \), if for each \(t \in T \), we have the random variable \(X_t \in \mathcal{F}_t \) or \(X_t^{-1}(\{x\}) \in \mathcal{F}_t \) for each \(x \in \mathbb{R} \).

We can define a natural filtration \(\mathcal{F}_\bullet = \{\mathcal{F}_t \subseteq \mathcal{F} : t \in T\} \) indexed by totally ordered \(T \) for the random process \(X = (X_s : s \in T) \), where \(\mathcal{F}_t = \sigma(X_s, s \leq t) \) is the information about the process till index \(t \) and the process \(X \) is adapted to its natural filtration by definition.

If \(X = (X_t : t \in T) \) is an independent process with the associated natural filtration \(\mathcal{F}_\bullet \), then for any \(t > s \) and events \(A \in \mathcal{F}_s \), the random variable \(X_t \) is independent of the event \(A \). This is just a fancy way of saying \(X_t \) is independent of \((X_u, u \leq s)\). Hence, for any random variable \(Y \in \mathcal{F}_t \), we have
\[
\mathbb{E}[\mathbb{E}[X_t | \mathcal{F}_s]] = \mathbb{E}[\mathbb{E}[X_t | Y]] = \mathbb{E}X_t \mathbb{E}Y.
\]

4 Examples of Tractable Stochastic Processes

In general, it is very difficult to characterize a stochastic process completely in terms of its finite dimensional distribution. However, we have listed few analytically tractable examples below, where we can completely characterize the stochastic process.

4.1 Independent and identically distributed processes

Let \(\{X_t : t \in T\} \) be an independent and identically distributed (iid) random process, with a common distribution \(F(x) \). Then, the finite dimensional distribution for this process for any finite \(S \subseteq T \) can be written as
\[
F_S(x) = P(\{X_\omega(t) \leq x, s \in S\}) = \prod_{s \in S} F(x).
\]

It’s easy to verify that the first and the second moments are independent of time indices. Since \(X_t = X_0 \) in distribution,
\[
m_X = \mathbb{E}X_0, \quad R_X = \mathbb{E}X_0^2, \quad C_X = \text{Var}(X_0).
\]

4.2 Stationary processes

A stochastic process \(X_t \) is \textbf{stationary} if all finite dimensional distributions are shift invariant, that is for finite \(S \subseteq T \) and \(t > 0 \), we have
\[
F_S(x) = P(\{X_\omega(t) \leq x, s \in S\}) = P(\{X_{\omega+t} \leq x, s \in S\}) = F_{t+S}(x).
\]

In particular, all the moments are shift invariant. Since \(X_t = X_0 \) and \((X_t, X_s) = (X_{t-s}, X_0)\) in distribution, we have
\[
m_X = \mathbb{E}X_0, \quad R_X(t-s,0) = \mathbb{E}X_{t-s}X_0, \quad C_X(t-s,0) = R_X(t-s,0) - m_X^2.
\]

4.3 Markov processes

A stochastic process \(X_t \) is \textbf{Markov} if conditioned on the present state, future is independent of the past. That is, for any ordered index set \(T \) containing any two indices \(u > t \), we have
\[
P(\{X_u \leq x_u \} | \mathcal{F}_t) = P(\{X_u \leq x_u \} | \sigma(X_t)).
\]

We will study this process in detail in coming lectures.
4.4 Lévy processes

A right continuous with left limits stochastic process $X = (X_t : t \in T \subseteq \mathbb{R}_+)$ with $X_0 = 0$ almost surely, is a Lévy process if the following conditions hold.

(L1) The increments are independent. For any $0 \leq t_1 < t_2 < \cdots < t_n < \infty$, $X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \ldots, X_{t_n} - X_{t_{n-1}}$ are independent.

(L2) The increments are stationary. For any $s < t$, $X_t - X_s$, is equal in distribution to X_{t-s}.

(L3) Continuous in probability. For any $\varepsilon > 0$ and $t \geq 0$ it holds that $\lim_{h \to 0} P(|X_{t+h} - X_t| > \varepsilon) = 0$.

Example 4.1. Two examples of Lévy processes are Poisson process and Wiener process. The distribution of Poisson process at time t is Poisson with rate λt and the distribution of Wiener process at time t is zero mean Gaussian with variance t.

Theorem 4.2. A Lévy process has infinite divisibility. That is, for all $n \in \mathbb{N}$

$$Ee^{\theta X_t} = \left(Ee^{\theta X_t/n}\right)^n.$$

Further, if the process has finite moments $\mu_n(t) = EX^n_t$ then the following Binomial identity holds

$$\mu_n(t+s) = \sum_{k=0}^{n} \binom{n}{k} \mu_k(t) \mu_{n-k}(s).$$

Proof. The first equality follows from the independent and stationary increment property of the process, and the fact that we can write

$$X_t = \sum_{k=1}^{n} X_{\frac{t}{n}} - X_{\frac{(k-1)t}{n}}.$$

Second property also follows from the the independent and stationary increment property of the process, and the fact that we can write

$$X^n_{t+s} = (X_t + X_{t+s} - X_t)^n = \sum_{k=0}^{n} \binom{n}{k} X^k_t (X_{t+s} - X_t)^{n-k}.$$

\[\square\]