1. Consider a queue where the customers are arriving according to a Poisson process with rate \(\lambda \).
Compute the aggregate expected waiting time for all arriving customers by time \(t \).

2. Let \(\{Z(t) : t \geq 0\} \) be a compound Poisson process whose jumps occur at rate \(\lambda \) and the iid jump sizes \(\{X_i : i \in \mathbb{N}\} \) are of discrete sizes, taking values in a countable set \(E \subset \mathbb{R} \). Compute the mean function \(E[Z(t)] \) and the moment generating function \(E e^{-\theta Z(t)} \). Compute the moment generating function when jump sizes are not necessarily discrete valued.

3. Consider a Poisson arrival with rate \(\lambda \), where each arrival can be tagged to be of type \(i \in [k] \). At each time \(s \), an arrival can be classified to be of type \(i \) with probability \(p_i(s) \) such that \(\sum_i p_i(s) = 1 \). Let \(N_i(t) \) denote the number of arrivals of type \(i \) in time interval \([0, t]\). Show that \(\{N_i(t) : i \in [k]\} \) are independent with Poisson distribution of mean \(\lambda \int_0^t p_i(s) \, ds \) for type \(i \).

4. Let \(S_n \) be the \(n \)th jump instant of a renewal process with iid inter-renewal time \(X_n \) and renewal function \(m \).
 (a) Compute \(\sum_{n \in \mathbb{N}} P\{S_n \leq t\} \).
 (b) Compute \(E e^{-\theta S_n} \).
 (c) Compute \(E \sum_{n \in \mathbb{N}} f(S_n) \) for any non-negative function on \(\mathbb{R}_+ \).