Random Variables - Examples & Exercises

Prepared By: Karthik
Aug. 24 2017

Assume \((\Omega, \mathcal{F}, P)\) is a probability space.

1. If \(X : \Omega \to \mathbb{R}\) is a random variable defined with respect to \(\mathcal{F}\), and \(a \in \mathbb{R}\) is any constant, show that \(Y = aX\) is also a random variable with respect to \(\mathcal{F}\).

\(Y = aX\) is a function defined as \(Y(\omega) = aX(\omega), \omega \in \Omega\). Since \(X\) is given to be a random variable, the following statements are equivalent to (21):

\[
\{\omega \in \Omega : X(\omega) \leq y\} \in \mathcal{F} \quad \text{for all } y \in \mathbb{R}, \tag{1}
\]
\[
\{\omega \in \Omega : X(\omega) \geq y\} \in \mathcal{F} \quad \text{for all } y \in \mathbb{R}, \tag{2}
\]
\[
\{\omega \in \Omega : X(\omega) < y\} \in \mathcal{F} \quad \text{for all } y \in \mathbb{R}, \tag{3}
\]
\[
\{\omega \in \Omega : X(\omega) > y\} \in \mathcal{F} \quad \text{for all } y \in \mathbb{R}. \tag{4}
\]

In order to show that \(Y\) is a random variable, it suffices to show that

\[
\{\omega \in \Omega : Y(\omega) \leq x\} = \{\omega \in \Omega : aX(\omega) \leq x\} \in \mathcal{F} \quad \text{for all } x \in \mathbb{R}. \tag{5}
\]

(a) Case 1: Suppose \(a = 0\). Then,

\[
\{\omega \in \Omega : Y(\omega) \leq x\} = \{\omega \in \Omega : aX(\omega) \leq x\}
= \{\omega \in \Omega : 0 \leq x\}
= \begin{cases} \phi, & x < 0 \\ \Omega, & x \geq 0. \end{cases} \tag{6}
\]

From the above description, it is clear that \(\{\omega \in \Omega : Y(\omega) \leq x\} \in \mathcal{F}\) for all \(x \in \mathbb{R}\). Thus, \(Y = aX\) is a random variable when \(a = 0\).

(b) Case 2: Suppose \(a > 0\). Then, for any \(x \in \mathbb{R}\),

\[
\{\omega \in \Omega : Y(\omega) \leq x\} = \{\omega \in \Omega : aX(\omega) \leq x\}
= \{\omega \in \Omega : X(\omega) \leq \frac{x}{a}\} \in \mathcal{F} \tag{7}
\]

since \(\square\) holds with \(y = \frac{x}{a}\). Thus, \(Y = aX\) is a random variable for any \(a > 0\).

(c) Case 3: Suppose \(a < 0\). Then, for any \(x \in \mathbb{R}\),

\[
\{\omega \in \Omega : Y(\omega) \leq x\} = \{\omega \in \Omega : aX(\omega) \leq x\}
= \{\omega \in \Omega : X(\omega) \geq \frac{x}{a}\} \in \mathcal{F} \tag{8}
\]
since (2) holds with \(y = \frac{x}{a} \). Thus, \(Y = aX \) is a random variable for any \(a < 0 \).

2. If \(X \) and \(Y \) are two random variables defined with respect to \(F \), show that \(X + Y \) is also a random variable with respect to \(F \).

Since \(X \) and \(Y \) are given to be random variables, by definition,

\[
\{ \omega \in \Omega : X(\omega) < y \} \in F \quad \text{for all } y \in \mathbb{R}, \tag{9}
\]

\[
\{ \omega \in \Omega : Y(\omega) < y \} \in F \quad \text{for all } y \in \mathbb{R}. \tag{10}
\]

In order to show that \(X + Y \) is a random variable, it suffices to show that

\[
\{ \omega \in \Omega : X(\omega) + Y(\omega) < x \} \in F \quad \text{for all } x \in \mathbb{R}. \tag{11}
\]

Fix an arbitrary \(x \in \mathbb{R} \). Then, \(X(\omega) + Y(\omega) < x \) implies that there exists a rational number \(q \in \mathbb{Q} \) such that \(X(\omega) < q \) and \(Y(\omega) < x - q \). Conversely, if there exists a rational number \(q \in \mathbb{Q} \) such that \(X(\omega) < q \) and \(Y(\omega) < x - q \), then this implies that \(X(\omega) + Y(\omega) < x \). By translating the words “there exists” and “and” into union and intersection of sets respectively, we get that

\[
\{ \omega \in \Omega : X(\omega) + Y(\omega) < x \} = \bigcup_{q \in \mathbb{Q}} \left(\{ \omega \in \Omega : X(\omega) < q \} \cap \{ \omega \in \Omega : Y(\omega) < x - q \} \right) \cap_{\in F \text{ from (9) with } y=q} \cap_{\in F \text{ from (10) with } y=x-q} \in F \text{ since intersection of two events in } F \text{ belongs to } F
\]

belongs to \(F \) since the union over \(z \in \mathbb{Z} \) is a countable union, and countable union of events in \(F \) belongs to \(F \) by the property that \(F \) is a \(\sigma \)-algebra. Thus, \(X + Y \) is a random variable.

Note 1: In the above analysis, it is crucial that \(X \) and \(Y \) are both defined with respect to \(F \). In other words, if \(X \) is defined with respect to \(F \) and \(Y \) is defined with respect to a different \(\sigma \)-algebra \(G \), then \(X + Y \) is not a meaningful definition.

Note 2: The above problem can also be solved using the fact that a continuous function of random variables is a random variable.

3. If \(X \) and \(Y \) are random variables defined with respect to \(F \), show that \(\max\{X,Y\} \) is also a random variable with respect to \(F \).

Since \(X \) and \(Y \) are given to be random variables, by definition,

\[
\{ \omega \in \Omega : X(\omega) \leq y \} \in F \quad \text{for all } y \in \mathbb{R}, \tag{12}
\]

\[
\{ \omega \in \Omega : Y(\omega) \leq y \} \in F \quad \text{for all } y \in \mathbb{R}. \tag{13}
\]

We need to show that

\[
\{ \omega \in \Omega : \max\{X(\omega),Y(\omega)\} \leq x \} \in F \quad \text{for all } x \in \mathbb{R}. \tag{14}
\]
Fix an arbitrary \(x \in \mathbb{R} \). Then, \(\max\{X(\omega), Y(\omega)\} \leq x \) implies that \(X(\omega) \leq x \) and \(Y(\omega) \leq x \), and the converse is also true. Thus,

\[
\{\omega \in \Omega : \max\{X(\omega), Y(\omega)\} \leq x\} = \{\omega \in \Omega : X(\omega) \leq x\} \cap \{\omega \in \Omega : Y(\omega) \leq x\}
\]

belongs to \(\mathcal{F} \) since intersection of two events in a \(\mathcal{F} \) belongs to \(\mathcal{F} \) by the property that \(\mathcal{F} \) is a σ-algebra. Hence \(\max\{X, Y\} \) is a random variable.

4. Show that if \(X \) is a random variable defined with respect to \(\mathcal{F} \), then \(X^2 \) is also a random variable defined with respect to \(\mathcal{F} \).

Since \(X \) is given to be a random variable, by definition,

\[
\{\omega \in \Omega : X(\omega) \leq y\} \in \mathcal{F} \quad \text{for all} \quad y \in \mathbb{R}, \quad (16)
\]

\[
\{\omega \in \Omega : X(\omega) \geq y\} \in \mathcal{F} \quad \text{for all} \quad y \in \mathbb{R}. \quad (17)
\]

We need to show that

\[
\{\omega \in \Omega : (X(\omega))^2 \leq x\} \in \mathcal{F} \quad \text{for all} \quad x \in \mathbb{R}. \quad (18)
\]

Clearly, since \((X(\omega))^2 \) is a non-negative real number, \(\{\omega \in \Omega : (X(\omega))^2 \leq x\} = \phi \) for all \(x < 0 \). Fix an arbitrary \(x \geq 0 \). Then,

\[
\{\omega \in \Omega : (X(\omega))^2 \leq x\} = \{\omega \in \Omega : |X(\omega)| \leq \sqrt{x}\} = \{\omega \in \Omega : -\sqrt{x} \leq X(\omega) \leq \sqrt{x}\} = \{\omega \in \Omega : \sqrt{-x} \leq X(\omega)\} \cap \{\omega \in \Omega : X(\omega) \leq \sqrt{x}\}
\]

belongs to \(\mathcal{F} \) since intersection of two events in \(\mathcal{F} \) belongs to \(\mathcal{F} \) by the property that \(\mathcal{F} \) is a σ-algebra. Hence \(X^2 \) is a random variable.

5. Let \((\Omega, \mathcal{F}) = (\mathbb{R}, \mathcal{B}) \), where \(\mathcal{B} \) denotes the Borel σ-algebra of subsets of \(\mathbb{R} \). If \(B \in \mathcal{B} \), then \(B \) is known as a Borel set. Let \(f : \mathbb{R} \to \mathbb{R} \) be a real-valued function defined on \(\mathbb{R} \). Then, \(f \) is said to be a Borel measurable function if:

\[
f^{-1}(B) \in \mathcal{B} \quad \text{for all} \quad B \in \mathcal{B}, \quad (20)
\]

i.e., if the inverse image (under \(f \)) of every Borel set is a Borel set.

6. If \(X : \Omega \to \mathbb{R} \) is a random variable defined with respect to \(\mathcal{F} \) and \(f : \mathbb{R} \to \mathbb{R} \) is Borel measurable, show that \(f(X) : \Omega \to \mathbb{R} \) is also a random variable with respect to \(\mathcal{F} \).

Since \(X \) is a random variable, by definition,

\[
X^{-1}(A) \in \mathcal{F} \quad \text{for every} \quad A \in \mathcal{B}, \quad (21)
\]
and since f is Borel measurable,

$$f^{-1}(B) \in \mathcal{B} \text{ for all } B \in \mathcal{B}. \quad (22)$$

In order to show that $g = f(X)$ is a random variable, we need to show that

$$g^{-1}(B) \in \mathcal{F} \text{ for every } B \in \mathcal{B}. \quad (23)$$

Fix an arbitrary $B \in \mathcal{B}$. Then,

$$g^{-1}(B) = (f(X))^{-1}(B) = X^{-1}(f^{-1}(B)) = X^{-1}(A) \in \mathcal{F}, \quad (24)$$

where $A = f^{-1}(B) \in \mathcal{B}$ from (22) since f is Borel measurable, and $X^{-1}(A) \in \mathcal{F}$ from (21) since X is a random variable.

Remark: Every continuous function is Borel measurable. Hence, if $X : \Omega \to \mathbb{R}$ is a random variable defined with respect to \mathcal{F}, and $f : \mathbb{R} \to \mathbb{R}$ is continuous, then $f(X) : \Omega \to \mathbb{R}$ is also a random variable with respect to \mathcal{F}. Thus, for example, if X is a random variable, so are $|X|, e^X, X^2, \sin(X), aX + b$ (for any $a, b \in \mathbb{R}$), etc. On similar lines, if X and Y are random variables defined with respect to \mathcal{F}, then so are $X + Y, X - Y, \log(|X + Y|)$, etc.

Miscellaneous exercises:

Assume (Ω, \mathcal{F}, P) is a probability space, and all random variables defined below are functions on Ω.

1. If X and Y are random variables defined with respect to \mathcal{F}, show that the following are also random variables defined with respect to \mathcal{F} (do not use the fact that continuous functions of random variables are random variables):

 (i) $|X|, |Y|
 (ii) $X - Y$
 (iii) XY
 (iv) $\min\{X, Y\}$
 (v) $X_+ := \max\{X, 0\}, X_- := -\min\{X, 0\}$
 (vi) $|X - Y|$.

2. If X and Y are random variables defined with respect to \mathcal{F}, show that

 $$\{\omega \in \Omega : X(\omega) = Y(\omega)\} \in \mathcal{F}.$$

3. Let $X : \Omega \to \mathbb{R} \cup \{-\infty, +\infty\}$ be a random variable defined with respect to \mathcal{F}. Then, show that $\{\omega \in \Omega : |X(\omega)| = \infty\} \in \mathcal{F}$ (in this example, X is allowed to take the values $-\infty$ and $+\infty$).
4. Prove, by induction, that for any \(n \geq 1 \), if \(X_1, \ldots, X_n \) are random variables, all defined with respect to \(\mathcal{F} \), then the following are also random variables with respect to \(\mathcal{F} \):

(a) \(\frac{X_1 + \ldots + X_n}{n} \)

(b) \(\frac{X_1 + \ldots + X_n}{\sqrt{n}} \).

5. Let \(X \) be a random variable defined with respect to \(\mathcal{F} \), and suppose \(X_1, X_2, \ldots \) is a sequence of random variables, all defined with respect to \(\mathcal{F} \). Then, show that for any \(\epsilon > 0 \),

\[
\{ \omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon \} \in \mathcal{F}
\]

for all \(n \geq 1 \).