1. **Vector Norms.** Recall the definitions of vector norms.

\[\forall x \in \mathbb{R}^d, p \geq 1, \|x\|_p := \left(\sum_{i=1}^{d} |x_i|^p \right)^{1/p}. \]

Show the following inequalities for any vector \(x \in \mathbb{R}^d \).

(a) \(\|x\|_2 \leq \|x\|_1 \leq \sqrt{d} \|x\|_2. \)

(b) \(\|x\|_\infty \leq \|x\|_2 \leq \sqrt{d} \|x\|_\infty. \)

(c) \(\|x\|_1 \leq \|d\|_\infty \leq \|x\|_\infty. \)

(d) \(\forall p \geq 1, \|x\|_\infty \leq \|x\|_p \leq d^{1/p} \|x\|_\infty. \)

(e) \(\lim_{p \to \infty} \|x\|_p = \|x\|_\infty. \)

2. **Matrix Norms.** Show that the following hold for any matrices \(A \) and \(B \).

(a) Recall the Frobenius norm of a matrix \(A \): \(\|A\|_F := \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2}. \) Show that,

\[\|AB\|_F \leq \|A\|_F \|B\|_F, \]

whenever, \(A \) and \(B \) are compatible.

(b) Recall the spectral-norm of a matrix: \(\|A\|_2 := \sup_{\|x\|_2 \leq 1} \|Ax\|_2. \) Show that,

\[\|A\|_2 = \sqrt{\lambda_{\text{max}}(A^T A)}, \]

where \(\lambda_{\text{max}}(M) \) is the maximum eigenvalue of a square matrix \(M \).

(c) Let \(A \in \mathbb{R}^{n \times p}. \) Show that \(\|A\|_F = \sqrt{\text{tr}(A^T A)} = \sqrt{\sum_{i=1}^{m} \sigma_i(A)^2}, \) where \(\text{tr}(M) := \sum_{i=1}^{n} M_{ii} \) for any square matrix \(M \in \mathbb{R}^{n \times n} \) and \(\sigma_i(A) := \phi^h \) largest singular value of matrix \(A \).

3. Let \(\mathcal{H} \) be a hyperplane in \(\mathbb{R}^d \) whose equation is given by

\[w^T x + b = 0, \]

for some normal vector \(w \in \mathbb{R}^d \) and offset \(b \in \mathbb{R}. \) Let \(d_p(x, \mathcal{H}) \) denote the \(p \)-norm distance of \(x \) to the hyperplane \(\mathcal{H}, \) that is,

\[d_p(x, \mathcal{H}) = \inf_{x' \in \mathcal{H}} \|x' - x\|_p. \]

Then, show that the following holds \(\forall p \geq 1, \)

\[d_p(x, \mathcal{H}) = \frac{|w^T x + b|}{\|w\|_q}. \]

where \(q \) is the conjugate of \(p, \) that is, \(\frac{1}{p} + \frac{1}{q} = 1. \)

4. Assume \(h : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R}^d \to \mathbb{R} \) are twice differentiable functions and for all \(x \in \mathbb{R}^d, \) define \(f(x) = h(g(x)). \) Then show that the following implications are valid:

(a) \(h \) is convex and non-increasing, and \(g \) is concave \(\Rightarrow f \) is convex.

(b) \(h \) is concave and non-decreasing, and \(g \) is concave \(\Rightarrow f \) is concave.

(c) \(h \) is concave and non-increasing, and \(g \) is convex \(\Rightarrow f \) is concave.

5. **Support Vector Machines.** Consider the following training data \((x_1, x_2) \in \mathbb{R}^2, \)
(a) Plot these six training points. Are the classes \{+,-\} linearly separable?

(b) Construct the weight vector of the maximum margin hyperplane by inspection and identify the support vectors.

(c) If you remove one of the support vectors does the size of the optimal margin decrease, stay the same, or increase?

Recall, in class we discussed the primal form of SVMs with slack variables,

\[
\min_{w, b, \xi} \frac{1}{2}||w||^2 + C \sum_{i=1}^{m} \xi_i \\
\text{s.t. } y_i(w^T x_i + b) \geq 1 - \xi_i, \quad \xi_i \geq 0, \quad i = 1, \ldots, m,
\]

where \(C \geq 0 \) is a constant chosen to trade off the simultaneous goals of maximizing the margin and minimizing the margin violation.

(a) If \(C = 0 \), What is the solution of the above optimization problem and what is its optimal value?

(b) How can we set \(C \) to make this problem essentially equivalent to that with the linearly separable data without slack variables?

(c) Write the Lagrangian of this optimization problem for SVMs with slack variables. Use \(\{\alpha_i\}_{i=1}^{m} \) to denote Lagrangian multipliers and derive the dual. Explicitly state how do you derive the dual.

(d) Compute \(w \) and \(b \) using the dual formulation.

(e) As you just showed, we can compute the optimal separating hyperplane using the solution to the dual problem. Only a subset of the training examples \(\{x_i\}_{i=1}^{m} \) are actually used to compute \(w \) and \(b \). Find those examples in terms of the Lagrange multipliers \(\{\alpha_i\}_{i=1}^{m} \) and rewrite the expressions of \(w \) and \(b \) using those. [Hint. These examples are called Support Vectors.]

(f) Where do these examples – found in part (d) – lie with respect to the separating hyperplane and two margin hyperplanes, and what can you state about the values of their corresponding slack variables \(\{\xi_i\}_{i=1}^{m} \) and Lagrange multipliers \(\{\alpha_i\}_{i=1}^{m} \)? What can you say about the remaining examples in the training set? [Hint. If possible, break your answers for \(\alpha_i = 0, 0 < \alpha_i < C, \alpha_i = 1 \) and \(\alpha_i > C \) respectively]

(g) If we test our model \((w, b)\) on the training examples \(\{x_i\}_{i=1}^{m} \) itself, which all examples will be correctly classified and which all will be misclassified? [Hint. Part (f)]