Lecture-03: Data Processing

1 Data Processing

The definitions of entropy, mutual information, and divergence all extend naturally to any finite number of random variables by treating multiple random variables as a single random vector. However, there are a few new concepts that can only be defined in terms of three random variables. Let \(X, Y, \) and \(Z \) be random variables with joint distribution \(p_{X,Y,Z}(x,y,z) \).

Definition 1.1. For three r.v. \((X,Y,Z) \sim p_{X,Y,Z}(x,y,z) \) defined on \(X \times Y \times Z \), the conditional mutual information (in bits) between \(X \) and \(Y \) given \(Z \) is denoted

\[
I(X;Y|Z) \triangleq \sum_{(x,y,z) \in X \times Y \times Z} p_{X,Y,Z}(x,y,z) \log_2 \frac{p_{X,Y|Z}(x,y,z)}{p_{X|Z}(x,z)p_{Y|Z}(y,z)} = \mathbb{E} \left[\log_2 \frac{p_{X,Y|Z}(X,Y,Z)}{p_{X|Z}(X,Z)p_{Y|Z}(Y,Z)} \right].
\]

From this, we see that \(I(X;Y|Z) = H(X|Z) + H(Y|Z) - H(X,Y|Z) \). Thus the conditioning is simply inherited by each entropy in the standard decomposition.

Definition 1.2. Three r.v. \((X,Y,Z) \sim p_{X,Y,Z}(x,y,z) \) form a Markov chain \(X - Y - Z \) if

\[
p_{X,Y,Z}(x,y,z) = p_X(x)p_Y(y|x)p_Z(z|y).
\]

This is clearly the same as \(p_{Z|X,Y}(z|x,y) = p_{Z|Y}(z|y) \) for all \(x,y,z \), which is equivalent to the condition that \(X \) and \(Z \) are conditionally independent given \(Y \).

Lemma 1.3. Properties of mutual information for three random variables:

1. (chain rule of mutual information) \(I(X;Y,Z) = I(X;Y) + I(X;Z|Y) \).

 Proof. This follows from the expectation of the decomposition

 \[
 \log_2 \frac{p_{X,Y,Z}(X,Y,Z)}{p_X(x)p_Y(Y)Z(Z)} = \log_2 \frac{p_{X,Y}(X,Y)p_{Z|X,Y}(Z|X,Y)}{p_X(x)p_Y(Y)p_{Z|Y}(Z|Y)} = \log_2 \frac{p_{X,Y|(X,Z|Y)}}{p_X(x)p_Y(Y)} + \log_2 \frac{p_{X,Z|Y}(X,Z|Y)}{p_{Z|Y}(Z|Y)p_{X|Y}(X|Y)}.
 \]

2. (non-negativity of conditional mutual information) \(I(X;Y|Z) \geq 0 \) with equality iff \(X \) and \(Y \) are conditionally independent given \(Z \).

 Proof. First, we observe that

 \[
 I(X;Y|Z) = \sum_z p_Z(z) \mathbb{D}(p_{X,Y|Z=z} \parallel p_{X|Z=z}p_{Y|Z=z}).
 \]

 Each term in this sum is non-negative and equal to zero iff \(p_{X,Y|Z=z}(x,y) = p_{X|Z=z}(x)p_{Y|Z=z}(y) \) for all \(x,y \). Thus, the overall sum is zero iff the condition holds for all \(x,y,z \) (i.e., \(X \) and \(Y \) are conditionally independent given \(Z \)).

Theorem 1.4 (Data Processing Inequality). If three r.v. \((X,Y,Z) \sim p_{X,Y,Z}(x,y,z) \) form a Markov chain \(X - Y - Z \), then \(I(X;Z) \leq I(X;Y) \). For example, if \(Z = f(Y) \) is a function of \(Y \), then \(X - Y - Z \) form a Markov chain.
Proof. Applying the chain rule of mutual information in the two possible orders gives
\[I(X;Y,Z) = I(X;Z) + I(X;Y|Z) = I(X;Y) + I(X;Z|Y). \]
Since \(X - Y - Z \) form a Markov chain, \(X \) and \(Z \) are conditionally independent and \(I(X;Z|Y) = 0 \). Thus, we have
\[I(X;Y) = I(X;Z) + I(X;Y|Z) \geq I(X;Z). \]
If \(Z = f(Y) \), then \(p_{Z|X,Y}(z|x,y) = \mathbb{1}_{\{z=f(y)\}} = p_{Z|Y}(z,y) \) and \(X - Y - Z \) form a Markov chain. \(\square \)

Example 1.5. A system has a random state \(X \) and an experiment with outcome \(Y \) is performed to measure that state. Is it possible that additional processing can produce a new output \(Z = f(Y) \) such that \(H(X|Z) < H(X|Y) \)?

Theorem 1.6 (Fano’s Inequality). Let the r.v. \(Y \) be an observation of the r.v. \(X \) and \(\hat{X} = f(Y) \) be an estimate of \(X \). Then, the error probability \(P_e = P(\hat{X} \neq X) \) satisfies
\[H(P_e) + P_e \log_2(|X| - 1) \geq H(X|Y). \]

Proof. Let \(E = \mathbb{1}_{\{\hat{X} = X\}} \) be an indicator r.v. for the error event. Expanding the conditional entropy \(H(E, X|\hat{X}) \) in two ways gives
\[H(E, X|\hat{X}) = H(X|\hat{X}) + H(E|X, \hat{X}) = H(E|\hat{X}) + H(X|E, \hat{X}). \]
Now \(H(X|\hat{X}) \geq H(X|Y) \) by data processing inequality, since \(X - Y - \hat{X} \) form a Markov chain, and \(H(E|X, \hat{X}) = 0 \) since \(E = \mathbb{1}_{\{\hat{X} \neq X\}} \). Further, \(H(E|\hat{X}) \leq H(E) \leq H(P_e) \) since the conditioning reduces entropy. In addition, \(H(X|E = 0, \hat{X}) = 0 \), and we can write
\[H(X|E = 1, \hat{X}) \leq H(X \neq \hat{X}) \leq \log_2(|X| - 1). \]
This implies that \(H(X|E, \hat{X}) \leq P_e \log_2(|X| - 1) \). Rearranging these terms gives the stated result. \(\square \)

2 Sequences of random variables

Let \((X_t : t \in \mathbb{N}) \) be a random process where each random variable lies in \(\mathcal{X} \). The joint probability distribution of the first \(N \) random variables is denoted \(P_N(x_1, \ldots, x_N) \). Let \([N] \triangleq \{1, 2, \ldots, N\}, \mathcal{A} \subseteq [N] \), and \(\bar{A} = [N] \setminus \mathcal{A} \) be sets of indices. We will denote subvectors with indices in \(\mathcal{A} \) and \(\bar{A} \) by
\[x_A = (x_t : t \in \mathcal{A}), \quad x_{\bar{A}} = (x_t : t \in \bar{A}). \]
The marginal distribution of variables in \(\mathcal{A} \) is given by summing over all variables in \(\bar{A} \):
\[P_{\mathcal{A}}(x_{\mathcal{A}}) = \sum_{x_{\bar{A}}} P_N(x_1, \ldots, x_N). \]

Definition 2.1. The entropy rate of a random process is defined to be
\[h_X \triangleq \lim_{N \to \infty} \frac{1}{N} H(X_1, X_2, \ldots, X_N), \]
if the limit exists.

Example 2.2. If the random variables are drawn i.i.d. according to \(p(x) \), then
\[P_N(x_1, \ldots, x_N) = \prod_{t=1}^N p(x_t). \]
In this case, \(H(X_1, \ldots, X_N) = NH(p) \) and the entropy rate is \(h_X = H(p) \).
Example 2.3. If the random variables form a homogenous Markov chain, then

$$P_N(x_1, \ldots, x_N) = p_1(x_1) \prod_{t=1}^{N} w(x_t \to x_{t+1}),$$

where $p_1(x)$ is the distribution of the initial state and $w(x \to x') = p_{X_{t+1} \mid X_t}(x' \mid x)$ defines the transition probabilities of the chain. In this case, the entropy rate is given by

$$h_X = \lim_{N \to \infty} \frac{1}{N} H(X_1, X_2, \ldots, X_N) = \lim_{N \to \infty} \frac{1}{N} \left(H(X_1) + \sum_{t=1}^{N-1} H(X_{t+1} \mid X_t) \right)$$

$$= \sum_{x \in \mathcal{X}} \left(\lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N-1} p_t(x) \sum_{x' \in \mathcal{X}} w(x \to x') \log_2 \frac{1}{w(x \to x')} \right)$$

$$= \sum_{x \in \mathcal{X}} p^*(x) \sum_{x' \in \mathcal{X}} w(x \to x') \log_2 \frac{1}{w(x \to x')}',$$

where the last step assumes that $w(x \to x')$ was chosen so that the limiting occupancy distribution $p^*(x) = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N-1} p_t(x)$ exists and is independent of the initial state distribution.