Lecture 13: Foster-Lyapunov Theorem

1 Foster’s Theorem

Theorem 1.1 (Foster, 1950). Let \(\{X_n\}_{n \geq 0} \) be a irreducible DTMC on \(\mathbb{N}_0 \) if there exist a function \(L : \mathbb{N}_0 \rightarrow \mathbb{R}_+ \) with \(\mathbb{E}[L(X_0)] < \infty \), such that for some \(K > k \geq 0 \), and \(\epsilon > 0 \):

1. \(|\{x \in \mathbb{N}_0 : L(x) \leq k\}| < \infty \)
2. \(\mathbb{E}[L(X_n)|X_{n-1}] < K \), when \(L(X_{n-1}) \leq k \).
3. \(\mathbb{E}[L(X_n) - L(X_{n-1})|X_{n-1}] < -\epsilon \) if \(L(X_{n-1}) \geq k \).

Then \(\{X_n\}_{n \geq 0} \) is positive recurrent. (\(L \equiv \) "potential function" or energy or lyapunov function).

Proof. As DTMC is irreducible than enough to show that some state is positive recurrent. By renewal theory, for ant DTMC, for all \(x \in \mathbb{N}_0 \),

\[
\lim_{N \to \infty} \mathbb{E}\left[\sum_{n=1}^{N} 1_{\{X_n = x\}} \right] = \frac{1}{\mu_{xx}} \tag{1}
\]

where

\[
\mu_{xx} = \begin{cases}
\infty & \text{if } x \text{ is transient} \\
\sum_{m \geq 0} m f_{xx} & \text{if } x \text{ is recurrent}
\end{cases}
\]

consider the RHS of equation (1)

\[
\lim_{N \to \infty} \mathbb{E}\left[\sum_{n=1}^{N} 1_{\{X_n = x\}} \right] > 0 \iff x \text{ is positive recurrent}
\]
consider
\[
0 \leq \mathbb{E}[L(X_n)] = \mathbb{E}[L(X_0)] + \sum_{n=1}^{N} \mathbb{E}[L(X_n) - L(X_{n-1})]
\]
\[
= \mathbb{E}[L(X_0)] + \sum_{n=1}^{N} \mathbb{E}[L(X_n) - L(X_{n-1})]1\{L(X_{n-1}) > k\} + \sum_{n=1}^{N} \mathbb{E}[L(X_n) - L(X_{n-1})]1\{L(X_{n-1}) \leq k\}
\]
\[
\leq \mathbb{E}[L(X_0)] + \sum_{n=1}^{N} \mathbb{E}[-\epsilon 1\{L(X_{n-1}) > k\}] + \sum_{n=1}^{N} \mathbb{E}[K 1\{L(X_{n-1}) \leq k\}]
\]
\[
\Rightarrow \left(\mathbb{E} \sum_{n=1}^{N} 1\{L(X_{n-1}) \leq k\} \right) (K + \epsilon) \geq -\mathbb{E}[L(X_0)] + \epsilon N
\]
\[
\Rightarrow \frac{1}{N} \left(\mathbb{E} \sum_{n=1}^{N} 1\{L(X_{n-1}) \leq k\} \right) \geq -\frac{\mathbb{E}[L(X_0)]}{K + \epsilon} + \frac{\epsilon}{K + \epsilon}
\]
\[
\Rightarrow \limsup_{N \to \infty} \frac{1}{N} \left(\mathbb{E} \sum_{n=1}^{N} 1\{L(X_{n-1}) \leq k\} \right) \geq \frac{\epsilon}{K + \epsilon}
\]

Let \(F = \{ x \in \mathbb{N}_0 : L(x) \leq k \} \), \(|F| < \infty\). Now,

\[
\limsup_{N \to \infty} \frac{1}{N} \left(\mathbb{E} \sum_{n=1}^{N} 1\{L(X_{n-1}) \leq k\} \right) = \limsup_{N \to \infty} \frac{1}{N} \left(\mathbb{E} \sum_{n=1}^{N} \sum_{x \in F} 1\{X_{n-1} \leq k\} \right) \leq \sum_{x \in F} \left(\limsup_{N \to \infty} \frac{1}{N} \mathbb{E} \sum_{n=1}^{N} 1\{X_{n-1} \leq k\} \right)
\]
\[
= \sum_{x \in F} \left(\limsup_{N \to \infty} \frac{1}{N} \mathbb{E} \sum_{n=1}^{N} 1\{X_{n-1} \leq k\} \right) \geq \frac{\epsilon}{K + \epsilon} > 0
\]

Therefore there exist some \(x \in F \) such that ,

\[
\limsup_{N \to \infty} \frac{1}{N} \mathbb{E} \left(\sum_{n=1}^{N} 1\{X_{n-1} \leq k\} \right) \geq \frac{\epsilon}{(K + \epsilon)|F|} > 0
\]

Therefore there exist some \(x \in F \) such that ,

\[
\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \left(\sum_{n=1}^{N} 1\{X_{n-1} \leq k\} \right) > 0
\]
2 Applications of Foster’s theorem: Queue scheduling/Max-weight scheduling

Consider N queue served by a single server in discrete time (Figure 1). At time slot $t = 1,2,3,...$, $A_i(t) \in \mathbb{N}_0$ packets arrive to each queue $i \in [N]$ independently.

1. $E[A_i(t)] = \lambda_i$
2. $P[A_i(t) = 0] > 0$
3. $E[A_i(t)^2] \leq C$

Server picks one queue $Q(t) \in [N]$ for service. Let $R_i(t) = 1\{Q(t) = i\}$. One packet is served from $Q(t)$ if it is not empty. Let $X_i(t)$ = number of packets in queue i just before time slot t.

$$X_i(t+1) = (X_i(t) + A_i(t) - R_i(t))_+$$

Where

$$a_+ = \max(0,a)$$
\[X_i(t+1) = X_i(t) + A_i(t) - R_i(t) + L_i(t) \]

Where

\[L_i(t) = \begin{cases} 1 & \text{service attempted when } i \text{ is empty} \\ 0 & \text{otherwise} \end{cases} \]

Mean rate of arrivals to system: \(\sum_{i=1}^{N} \lambda_i \)

Maximum rate of departure \(= 1 \), we will assume \(\sum_{i=1}^{N} \lambda_i < 1 \).

Theorem 2.1 (Max-weight scheduling algorithm, 1992).

\[Q(t) = \arg \max_{i \in N} X_i(t) \]

that is serve the longest queue. Under MAX-WT, \(X(t) = (X_i(t))_{i=1}^{N} \) is a DTMC which is irreducible and aperiodic on state space \(\mathbb{N}_0^N \). As long as \(\sum_{i=1}^{N} \lambda_i < 1 \), \(\{X_n\} \) is positive recurrent.

Proof. By Foster’s theorem, define the Lyapunov function:

\[L(x) = \frac{1}{2} \sum_{i=1}^{N} x_i^2 \]

consider

\[
L(X(t)) - L(X(t-1)) \\
= \frac{1}{2} \sum_{i=1}^{N} \left[(X_i(t))^2 - (X_i(t-1))^2 \right] \\
= \frac{1}{2} \sum_{i=1}^{N} \left[(X_i(t) - X_i(t-1))^2 \right] \\
\leq \frac{1}{2} \sum_{i=1}^{N} \left[(A_i(t) - R_i(t))^2 - (X_i(t-1))^2 \right]
\]

Therefore

\[
\mathbb{E}\left[L(X(t)) - L(X(t-1))|X(t-1) = x \right] \leq \frac{1}{2} \sum_{i=1}^{N} \mathbb{E}\left[(x_i + A_i(t-1) - R_i(t))^2 - x_i^2 |X(t-1) = x \right] \\
= \frac{1}{2} \sum_{i=1}^{N} \left[2x_i \mathbb{E}\left[(A_i(t-1) - R_i(t))|X(t-1) = x \right] + \mathbb{E}\left[(A_i(t-1) - R_i(t-1))^2 |X(t-1) = x \right] \right] \\
= \sum_{i=1}^{N} x_i \lambda_i - \sum_{i=1}^{N} x_i R_i(t-1) + \frac{N}{2} (1 + C) \\
= \sum_{i=1}^{N} x_i \lambda_i + \frac{N}{2} (1 + C) - \max_{i} x_i \\
\leq \frac{N}{2} (1 + C) + (\max_{i} x_i) \left(\sum_{i=1}^{N} \lambda_i - 1 \right) \\
= C_1 - \epsilon (\max_{i} x_i)
\]
Foster’s theorem applies with $k = \max\left\{ \frac{\|x\|^2}{2} \right\}$.