Lecture 03: Properties of Poisson Process

1 Conditional Distribution of Arrivals

Proposition 1.1. Let \(\{ N(t) \in [0, \infty) : t \in [n] \} \) be a Poisson process with \(\{ A_i \subseteq \mathbb{R}^+ : i \in [n] \} \) a set of finite disjoint intervals with \(B = \bigcup_{i \in [n]} A_i \), and \(\{ k_i \in \mathbb{N} : i \in [n] \} \) and \(k = \sum_{i \in [n]} k_i \). Then, we have

\[
\Pr \bigcap_{i \in [n]} \{ N_{A_i} = k_i | N(B) = k \} = k! \prod_{i \in [n]} \frac{1}{k_i!} \left(\frac{|A_i|}{|B|} \right)^{k_i}.
\]

Proof. It follows from the stationary independent increment property of Poisson processes that

\[
\Pr \bigcap_{i \in [n]} \{ N_{A_i} = k_i | N(B) = k \} = \Pr \bigcap_{i \in [n]} \{ N_{A_i} = k_i \} \Pr\{N_B = k\} \prod_{i \in [n]} \Pr\{N_{A_i} = k_i\}.
\]

Proposition 1.2. For a Poisson process \(\{ N(t) \in [0, \infty) : t \in [n] \} \), distribution of first arrival instant \(S_1 \) conditioned on \(\{ N(t) = 1 \} \) is uniform between \([0, t)\).

Proof. If \(N(t) = 1 \), then we know that conditional distribution of \(S_1 \) is supported on \([0, t)\). By Proposition ??, we see that

\[
\Pr\{S_1 \leq s | N(t) = 1\} = \frac{\Pr\{N(s) = 1, N(t - s) = 0 | N(t) = 1\} 1_{s < t}}{\Pr\{N = 1\}} = \frac{s}{t} 1_{s < t}.
\]

Alternative proof. For any \(0 \leq u < t \), we can write \(\{ S_1 = u, N(t) = 1 \} \) as intersection of two independent events,

\[
\{ S_1 = u, N(t) = 1 \} \iff \{ S_1 = u \} \cap \{ X_2 > t - u \}.
\]

Therefore, integrating LHS with respect to \(u \) in interval \([0, s]\) for \(s < t \), we obtain

\[
\Pr\{S_1 \leq s, N(t) = 1\} = \int_0^s du \lambda \exp(-\lambda u) \exp(-\lambda(t - u)) = s \lambda \exp(-\lambda t).
\]

Since \(\Pr\{N(t) = 1\} = \lambda t \exp(-\lambda t) \), it follows that

\[
\Pr\{S_1 \leq s | N(t) = 1\} = \begin{cases} \frac{s}{t}, & s < t \\ 0, & s \geq t. \end{cases}
\]
Proposition 1.3. For a Poisson process \(\{N(t), t \geq 0\} \), joint distribution of arrival instant \(\{S_1, \ldots, S_n\} \) conditioned on \(\{N(t) = n\} \) is identical to joint distribution of order statistics of \(\text{iid} \) uniformly distributed random variables between \([0, t]\).

Proof. Let \(\{s_0 = 0 < s_1 < s_2 < \cdots < s_n < t\} \) be a finite sequence of non-negative increasing numbers between 0 and \(t \). Then, by Proposition 2.1, we get
\[
\Pr \left(\bigcap_{i \in [n]} \{S_i \leq s_i\} | N(t) = n \right) = \Pr \left(\bigcap_{i \in [n]} \{N([0, s_i]) \geq i\} | N(t) = n \right).
\]

Alternative proof. Let \(\{s_i \in (0, t) : i \in [n]\} \) be a sequence of increasing numbers. If we denote \(s_0 = 0 \), then we can write
\[
\bigcap_{i=1}^{n} \{S_i = s_i\} \cap \{N(t) = n\} \iff \bigcap_{i=1}^{n} \{X_i = s_i - s_{i-1}\} \cap \{X_{n+1} > t - s_n\}.
\]

Note that all the events on RHS are independent events. Therefore, it is easy to compute the joint distribution of \(\{S_1, \ldots, S_n\} \), as
\[
\Pr \left(\bigcap_{i=1}^{n} \{S_i \leq s_i\} \cap \{N(t) = n\} \right) = \int_{0}^{s_1} du_1 \cdots \int_{0}^{s_n} du_n \prod_{i=1}^{n} \lambda \exp(-\lambda(u_i - u_{i-1}) \exp(-\lambda(t - u_n))
\]
\[
= \lambda^n \exp(-\lambda t) \prod_{i=1}^{n} s_i.
\]

Since \(\Pr\{N(t) = n\} = \exp(-\lambda t) \lambda^n / n! \), it follows that
\[
\Pr\{S_1 \leq s_1, \ldots, S_n \leq s_n | N(t) = n\} = \begin{cases} n! \prod_{i=1}^{n} \frac{s_i}{t} & s < t \\ 0 & s \geq t. \end{cases}
\]

Let \(U_1, \ldots, U_n \) are iid Uniform random variables in \([0, t]\). Then, the order statistics of \(U_1, \ldots, U_n \) has an identical joint distribution to \(n \) arrival instants conditioned on \(\{N(t) = n\} \). \(\square \)

2 Age and excess time

Definition 2.1. For a point process \(\{N(t), t \geq 0\} \), we can define age process \(\{A(t), t \geq 0\} \) and excess time process \(\{Y(t), t \geq 0\} \) as
\[
A(t) = t - S_{N(t)}, \quad Y(t) = S_{N(t)+1} - t.
\]

Proposition 2.2. For a Poisson process with rate \(\lambda \), the corresponding age and excess time are both exponentially distributed with rate \(\lambda \) irrespective of time \(t \).

Proof. Using stationary independent increment property of Poisson process, we can write complementary distribution of excess time process as
\[
\Pr\{Y(t) > y\} = \sum_{n \in \mathbb{N}_0} \Pr\{Y(t) > y, N(t) = n\} = \sum_{n \in \mathbb{N}_0} \Pr\{N(t + y) - N(t) = 0, N(t) = n\}
\]
\[
= \Pr\{N(y) = 0\} \sum_{n \in \mathbb{N}_0} \Pr\{N(t) = n\} = \Pr\{N(y) = 0\}.
\]

2
Similarly, we can write complementary distribution for the age process as
\[
\Pr\{A(t) \geq x\} = \sum_{n \in \mathbb{N}_0} \Pr\{A(t) \geq x, N(t) = n\} = \sum_{n \in \mathbb{N}_0} \Pr\{N(t) - N(t - x) = 0, N(t) = n\} = \sum_{n \in \mathbb{N}_0} \Pr\{N(t - x) = n\} \Pr\{N(x) = 0\} = \Pr\{N(x) = 0\}.
\]

\[
\square
\]

3 Superposition and decomposition of Poisson processes

Theorem 3.1 (Sum of Independent Poissons). Let \(\{N_1(t), t \geq 0\} \) and \(\{N_2(t), t \geq 0\} \) be two independent Poisson processes with rates \(\lambda_1 \) and \(\lambda_2 \) respectively. Then, the process \(N(t) = N_1(t) + N_2(t) \) is Poisson with rate \(\lambda_1 + \lambda_2 \).

Proof. We need to show that \(\{N(t)\} \) has stationary independent increments, and
\[
\Pr\{N(t) = n\} = \exp(-\lambda_1 - \lambda_2)t)\frac{(\lambda_1 + \lambda_2)^n t^n}{n!}.
\]

For two disjoint interval \((t_1, t_2)\) and \((t_3, t_4)\), we can see that for both processes \(N_1(t)\) and \(N_2(t)\), arrivals in \((t_1, t_2)\) and \((t_3, t_4)\) are independent. Therefore, \(N(t)\) has independent increment property. Similarly, we can argue about the stationary increment property of \(\{N(t)\}\). Further, we can write
\[
\{N(t) = n\} = \bigcup_{k=0}^{n} \{N_1(t) = k\} \cap \{N_2(t) = n - k\}.
\]

Since \(N_1(t)\) and \(N_2(t)\) are independent, we can write
\[
\Pr\{N(t) = n\} = \sum_{k=0}^{n} \exp(-\lambda_1 t)\frac{(\lambda_1 t)^k}{k!} \exp(-\lambda_2 t)\frac{(\lambda_2 t)^{n-k}}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} (\lambda_1 t)^k (\lambda_2 t)^{n-k}.
\]

Result follows by recognizing that summand is just binomial expansion of \([\lambda_1 + \lambda_2]t^n\).

Remark 3.2. If independence condition is removed, the statement is not true.

Theorem 3.3 (Independent Splitting). Let \(\{N(t), t \geq 0\} \) be a Poisson arrival process. Each arrival can be randomly assigned to either arrival type 1 or 2, with probability \(p \) and \(1 - p \) respectively, independent of previous assignments. Arrival processes of type 1 and 2 are denoted by \(N_1(t) \) and \(N_2(t) \) respectively. Then, \(\{N_1(t), t \geq 0\} \) and \(\{N_2(t), t \geq 0\} \) are mutually independent Poisson processes with rates \(\lambda p \) and \(\lambda (1 - p) \) respectively.

Proof. To show that \(N_1(t), t \geq 0 \) is a Poisson process with rate \(\lambda p \), we show that it is stationary independent increment process with the distribution
\[
\Pr\{N_1(t) = n\} = \frac{(p\lambda t)^n}{n!} e^{-\lambda pt}.
\]
Figure 1: Splitting a Poisson process into two independent Poisson processes.

The stationary, independent increment property of the probabilistically filtered processes \(\{N_1(t), t \geq 0\} \) and \(\{N_2(t), t \geq 0\} \) can be understood and argued out from the example given in the figure. Notice that

\[
\{N_1(t) = k\} = \bigcup_{n=k}^{\infty} \{N(t) = n, N_1(t) = k\}.
\]

Further notice that conditioned on \(\{N(t) = n\} \), probability of event \(\{N_1(t) = k\} \) is merely probability of selecting \(k \) arrivals out of \(n \), each with independent probability \(p \). Therefore,

\[
\Pr\{N_1(t) = k\} = \exp(-\lambda t) \sum_{n=k}^{\infty} \frac{(\lambda t)^n}{n!} \binom{n}{k} p^k (1-p)^{n-k},
\]

\[
= \exp(-\lambda t) \left(\frac{\lambda p t}{k!}\right) \sum_{n=k}^{\infty} \frac{(\lambda (1-p)t)^{n-k}}{(n-k)!}.
\]

Recognizing that infinite sum in RHS adds up \(\exp(\lambda (1-p)t) \), the result follows. We can find the distribution of \(N_2(t) \) by similar arguments. We will show that events \(\{N_1(t) = n_1\} \) and
\{N_2(t) = n_2\} are independent. To this end, we see that
\[
\{N_1(t) = n_1, N_2(t) = n_2\} = \{N(t) = n_1 + n_2, N_1(t) = n_1\}.
\]
Using their distribution for \(N_1(t), N_2(t)\), and conditional distribution of \(N_1(t)\) on \(N(t)\), we can show that
\[
\Pr\{N_1(t) = n_1, N_2(t) = n_2\} = \exp(-\lambda t) \frac{(\lambda t)^{n_1+n_2}}{(n_1+n_2)!} \left(\frac{n_1+n_2}{n_1}\right) p^{n_1}(1-p)^{n_2},
\]
\[
= \Pr\{N_1(t) = n_1\} \Pr\{N_2(t) = n_2\}.
\]
In general, we need to show finite dimensional distributions factorize. That is, we need to show that for measurable sets \(A_1, \ldots, A_n : j \in [m]\), we have
\[
\Pr\left(\bigcap_{i=1}^n \{N_1(t_i) \in A_i\} \bigcap_{j=1}^m \{N_2(s_j) \in B_j\}\right) = \Pr\left(\bigcap_{i=1}^n \{N_1(t_i) \in A_i\}\right) \Pr\left(\bigcap_{j=1}^m \{N_2(s_j) \in B_j\}\right).
\]
\[\square\]