1 Continued from the Lecture 3

The following is the summary of Bayesian, Minimax and Neyman Pearson hypothesis testing:

1.1 Bayesian Hypothesis Testing

Consider the binary hypothesis testing scenario, which has two possible hypotheses H_0 and H_1, corresponding to two possible probability distributions P_0 and P_1, respectively on the observation set (Γ). This problem is written as,

\[
H_0 : Y \sim P_0, \\
H_1 : Y \sim P_1.
\]

(1)

The decision rule δ is a function on Γ, given by,

\[
\delta(y) = 1_{\{y \in \Gamma_1\}}.
\]

(2)

We define expected cost incurred by decision rule δ when hypothesis H_j is true as,

\[
R_j(\delta) = C_{1j}P_j(\Gamma_1) + C_{0j}P_j(\Gamma_0),
\]

(3)

where Γ_0 is the rejection region, and Γ_1 is the acceptance region. The Bayes risk or the overall cost incurred by decision rule δ is given by,

\[
r(\delta) = \pi_0R_0(\delta) + \pi_1R_1(\delta), \\
= \pi_0R_0(\delta) + (1 - \pi_0)R_1(\delta),
\]

(4)

where π_0 and π_1 are known as the priori probabilities of the two hypotheses H_0 and H_1 respectively.
A commonly used cost assignment is the uniform cost given by

\[C_{ij} = \begin{cases} 0, & \text{if } i = j, \\ 1, & \text{if } i \neq j, \end{cases} \tag{5} \]

and the corresponding conditional risks are given by,

\[R_0(\delta) = P_0(\Gamma_1), \quad \text{and} \quad R_1(\delta) = P_1(\Gamma_0). \]

1.2 Minimax Hypothesis Testing

The minimax criterion is given by,

\[\min_{\delta} \max(R_0(\delta), R_1(\delta)). \tag{6} \]

Or equivalently,

\[\min_{\delta} \max_{0 \leq \pi_0 \leq 1} r(\pi_0, \delta) = \max_{0 \leq \pi_0 \leq 1} \min_{\delta} r(\pi_0, \delta), \tag{7} \]

where \(V(\pi_0) = \min_{\delta} r(\pi_0, \delta) \). The Minimax rule is achieved where \(\pi_0 \) is such that

\[R_0(\delta_{\pi_0}) = R_1(\delta_{\pi_0}). \tag{8} \]

1.3 Neyman-Pearson Hypothesis Testing

The design criterion for Neyman-Pearson hypothesis testing is,

\[\max_{\delta} P_D(\delta) \text{ subject to } P_F(\delta) \leq \alpha, \tag{9} \]

where \(P_D(\delta) \) is the probability of correct detection and \(P_F(\delta) \) which is the probability of false alarm and upper bounded by \(\alpha \). The randomized decision rule is written as,

\[\hat{\delta}(y) = \begin{cases} 1, & L(y) > \eta, \\ \gamma(y), & L(y) = \eta, \\ 0, & L(y) < \eta, \end{cases} \tag{10} \]

\[\therefore \hat{\delta}(y) = 1_{L(y) > \eta} + \gamma(y)1_{L(y) = \eta}. \tag{11} \]
where $\tilde{\delta}$ is interpreted as the conditional probability with which we accept H_1 for a given observation $Y = y$, $L(y) = \frac{p_1(y)}{p_0(y)}$ is the likelihood function, $\eta \geq 0$ is a certain threshold, and $0 \leq \gamma(y) \leq 1$. with $\eta = \eta_0$ and $\gamma(y) = \gamma_0$, we have,

$$\eta_0 = \inf \{ \eta \in \mathbb{R} : P_0 \{ L(y) > \eta \} \leq \alpha \}, \quad (12)$$

$$\gamma_0 = \frac{\alpha - P_0 \{ L(y) > \eta \}}{P_0 \{ L(y) = \eta \}}. \quad (13)$$

$P_0(L(y) > \eta)$ as a function of η is shown in figure [1]. This can be interpreted as the complementary distribution function of the likelihood function and hence right continuous and may have discontinuity. From figure [1], it is clear that $0 \leq \alpha - P_0 \{ L(y) > \eta \} \leq P_0 \{ L(y) = \eta \}$ and hence $0 \leq \gamma_0 \leq 1$.

Figure 1: Threshold and randomization for α level Neyman-Pearson test

Example 1.1 (Location testing with Gaussian error). Consider the following problem where we have a real-valued measurement Y, which is corrupted with Gaussian noise (n) having zero mean and standard deviation σ. Here the observation space is real line $\Gamma = \mathbb{R}$.

$$Y = X + n, \quad (14)$$

where $X \in \{ \mu_0, \mu_1 \}$ is the original signal and $n \sim \mathcal{N}(0, \sigma^2)$. In this example, 'null hypothesis' (H_0) indicates the transmission of signal with mean μ_0 and alternative hypothesis (H_1) indicates transmission of signal with mean μ_1. Without loss of generality, let us assume $\mu_1 > \mu_0$.

$$H_0 : Y \sim \mathcal{N}(\mu_0, \sigma^2), \quad (15)$$

$$H_1 : Y \sim \mathcal{N}(\mu_1, \sigma^2),$$

where $\mathcal{N}(\mu_0, \sigma^2)$ is Gaussian distribution with mean μ and variance σ^2. The probability density function has the form, $Pr(X = x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-\left(x - \mu\right)^2}{2\sigma^2}\right)$. 3
Bayesian Hypothesis testing

The likelihood function is given by,

\[L(y) = \frac{p_1(y)}{p_0(y)} = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{(x-\mu_1)^2}{\sigma^2} \right), \]

\[= \exp \left(\frac{\mu_1 - \mu_0}{\sigma^2} \left(y - \frac{\mu_1 + \mu_0}{2} \right) \right). \quad (16) \]

The Bayes rule is given by

\[\delta_B(y) = 1_{\{L(y) > \tau\}} \quad (17) \]

Where \(\tau \) is the appropriate threshold expressed in terms of prior probability of Null Hypothesis \(\pi_0 \) as \(\tau = \frac{\pi_0}{1-\pi_0} \) (in the case of uniform cost structure). Equivalently eqn. (17) can be written as comparing \(Y \) with another threshold \(\tau' = L^{-1}(\tau) \). Hence \(\delta_B(y) = 1_{\{Y > \tau'\}} \), where,

\[\tau' = \frac{\mu_0 + \mu_1}{2} + \frac{\sigma^2}{\mu_0 - \mu_1} \log(\tau). \quad (18) \]

For example, with uniform costs and equal priors we have \(\tau = 1 \) and \(\tau' = \left(\frac{\mu_0 + \mu_1}{2} \right) \).

Thus, in this particular case, the Bayes rule compares the observation to the average of \(\mu_0 \) and \(\mu_1 \). If \(y \) is greater than or equal to the average, the hypothesis \(H_1 \) is chosen, otherwise if \(y \) is less than this average, hypothesis \(H_0 \) is chosen. This test is illustrated in figure 2. We can write \(P_j(\Gamma_1) \) for \(j \in \{0, 1\} \) as follows.

![Figure 2: Illustration of location testing with Gaussian error with uniform cost and equal prior](image)

Figure 2: Illustration of location testing with Gaussian error with uniform cost and equal prior
\[P_j(\Gamma_1) = \int_{\Gamma_1} dP_j(y) = \int_{\tau'} dP_j(y), \text{ [since } \Gamma_1 = \{ y \in \mathcal{R} | y \geq \tau' \}], \]

\[= \int_{\tau' - \mu_j}^{\infty} dP(\tau), \]

\[= 1 - \Phi\left(\frac{\tau' - \mu_j}{\sigma}\right). \]

(19)

Now from eqn. (18), we can write the following

\[P_j(\Gamma_1) = \begin{cases}
1 - \Phi\left(\frac{\log(\tau) + \frac{d}{2}}{d}\right) & \text{if } j = 0, \\
1 - \Phi\left(\frac{\log(\tau) - \frac{d}{2}}{d}\right) & \text{if } j = 1,
\end{cases} \]

(20)

where \(d = \frac{\mu_j - \mu_0}{\sigma} \) is a simple version of signal-to-noise ratio (SNR) and \(\Phi \) denotes the cumulative distribution function of a \(\mathcal{N}(0, 1) \). Now the unconditional risk is,

\[r(\pi_0, \delta_{\pi_0}) = \pi_0 \left(1 - \Phi\left(\frac{\tau' - \mu_j}{\sigma^2}\right) \right) + (1 - \pi_0)\Phi\left(\frac{\tau' - \mu_j}{\sigma^2}\right) \]

(21)

For equal prior i.e. \(\pi_0 = \pi_1 = \frac{1}{2} \), we have,

\[r\left(\frac{1}{2}, \delta_{\frac{1}{2}}\right) = \frac{1}{2} \left(1 - \Phi\left(\frac{d}{2}\right) \right) + \frac{1}{2} \Phi\left(-\frac{d}{2}\right), \]

\[= 1 - \Phi\left(\frac{d}{2}\right) \text{ [due to even symmetry of Gaussian]}. \]

(22)

Figure 3: Bayes risk in location testing with Gaussian error
Minimax rule

We know that $V(\pi_0) = r(\pi_0, \delta_{\pi_0})$. Now $V(0) = C_{11}$ and $V(1) = C_{00}$, regardless of the cost structure as it only depends on prior and hence the least favorable prior π_L is in the interior $(0,1)$ in this case. Moreover, since eqn. (21) is a differentiable function of π_0, randomization is unnecessary, and π_L can be found by setting $R_0(\delta_{\pi_L}) = R_1(\delta_{\pi_L})$. [That randomization is unnecessary also follows by noting that $P_0(L(Y) = \tau) = P_1(L(Y) = \tau) = 0$ for any τ since $L(Y)$ is a continuous random variable]. The prior π_0 enters $R_0(\delta_{\pi_0})$ and $R_1(\delta_{\pi_0})$ only through τ', so an equalizer rule is found by solving,

$$1 - \Phi\left(\frac{\tau' - \mu_0}{\sigma}\right) = \Phi\left(\frac{\tau' - \mu_1}{\sigma}\right).$$

By even symmetry property of Gaussian distribution function, we have,

$$\frac{\tau' - \mu_0}{\sigma} = \frac{\mu_1 - \tau'}{\sigma}. \quad (24)$$

The unique solution is given by the following, which is also clear from the figure 4,

$$\tau' = \frac{\mu_0 + \mu_1}{2}. \quad (25)$$

So the minimax decision rule is $\delta_{\pi_L} = 1_{\{y > \frac{\mu_0 + \mu_1}{2}\}}$. From (25), it follows that the least favorable prior is $\pi_L = \frac{1}{2}$, and the minimax risk is,

$$V\left(\frac{1}{2}\right) = 1 - \Phi\left(\frac{\mu_1 - \mu_0}{2\sigma}\right). \quad (26)$$

![Figure 4: Conditional risk for location testing with Gaussian error and uniform cost](image_url)
Neyman Pearson rule

Here, we have,

\[P_F(\hat{\delta}_{NP}) = P_0\{L(Y) > \eta\}, \]
\[= P_0\{Y > L^{-1}(\eta)\}, \]
\[= 1 - \Phi\left(\frac{\eta' - \mu_0}{\sigma}\right). \] \hspace{1cm} (27)

where \(\eta' = \frac{\mu_0 + \mu_1}{2} + \frac{\sigma^2}{\mu_1 - \mu_0} \log \eta_0 \), and the curve of eqn. (27) is shown in figure 5. Note that any value of \(\alpha \) can be achieved by exactly choosing,

\[\eta_0' = \mu_0 + \sigma \Phi^{-1}(1 - \alpha), \] \hspace{1cm} (28)

where \(\Phi^{-1} \) is the inverse function of \(\Phi \). Since \(P(Y = \eta_0) = 0 \), randomization can be chosen arbitrarily say \(\gamma_0 = 1 \). An \(\alpha \) level Neyman-Pearson test for this case is given by,

\[\hat{\delta}_{NP} = \begin{cases}
1 - y \geq \eta_0, \\
0 - y < \eta_0,
\end{cases} \]
\[= 1_{\{y \geq \eta_0\}}. \] \hspace{1cm} (29)

The detection probability of \(\hat{\delta}_{NP} \) is given by,

\[P_D(\hat{\delta}_{NP}) = P_1\{Y \geq \eta_0\}, \]
\[= 1 - \Phi\left(\frac{\eta' - \mu_1}{\sigma}\right), \]
\[= 1 - \Phi(\Phi^{-1}(1 - \alpha) - \mu_0), \] \hspace{1cm} (30)

Figure 5: Illustration of threshold \(\eta_0' \) for Neyman-Pearson testing of location with Gaussian error.
where \(d = \frac{\mu_1 - \mu_0}{\sigma} \) as appeared previously in case of Bayes hypothesis testing. For fixed \(\alpha \), equation (30) gives the detection probability as a function of \(d \). This relationship is sometimes known as the power function for the test of eqn. (30). A plot of this relationship is shown in figure 6. Eqn. (29) also gives the detection probability as a function of the false-alarm probability for fixed \(d \). Again borrowing from radar terminology, a parametric plot of this relationship is called the receiver operating characteristics (ROCs). The ROCs for the test of (29) are shown in figure 7.

Figure 6: Power function for Neyman-Pearson testing for location testing with Gaussian error

Figure 7: ROC curve for Neyman-Pearson testing for location testing with Gaussian error
Example 1.2 (The Binary Channel). On a Binary Communication Channel a binary digit is to be transmitted. Our observation Y is the output of the channel, which can also be either zero or one. Due to channel noise a transmitted “zero” is received as a “one” with probability λ_0 and as a “zero” with probability $1 - \lambda_0$, where $0 \leq \lambda_0 \leq 1$. Similarly, a transmitted “one” is received as a “zero” with probability λ_1 and as a “one” with probability $1 - \lambda_1$. Thus, the observation Y does not always represent which among the “zero” or a “one” transmitted. So we need to develop a technique to optimally detect the transmitted digit.

![Figure 8: The binary channel](image)

This situation is clearly a Hypothesis Testing problem with the two hypothesis H_0 and H_1 depicted as transmission of a “zero” and transmission of a “one” respectively. The observation set is $\Gamma = \{0, 1\}$. The received signal $Y \in \Gamma$ will have a probability density function as follows:

\[
Y_0 \sim (1 - \lambda_0) \text{ if } H_0 \text{ is transmitted,}
\]

\[
Y_1 \sim (1 - \lambda_1) \text{ if } H_1 \text{ is transmitted,}
\]

and the observation Y has densities (i.e., probability mass functions):

\[
p_j(y) = \begin{cases}
\lambda_j, & \text{if } y \neq j, \\
(1 - \lambda_j), & \text{if } y = j,
\end{cases}
\]

for $j \in \{0, 1\}$.

Bayesian Hypothesis testing

The likelihood ratio is given by,

\[
L(y) = \frac{p_1(y)}{p_0(y)} = \begin{cases}
\frac{\lambda_1}{1 - \lambda_0}, & \text{if } y = 0, \\
\frac{1 - \lambda_1}{\lambda_0}, & \text{if } y = 1,
\end{cases}
\]

For certain threshold τ, the decision rule is,

\[
\delta_B(y) = \begin{cases}
1_{\{\frac{\lambda_1}{1 - \lambda_0} \geq \tau\}} & \text{if } y = 0 \text{ [we write it as } 1_A \text{ (event } A)\text{]}, \\
1_{\{\frac{1 - \lambda_1}{\lambda_0} \geq \tau\}} & \text{if } y = 1 \text{ [we write it as } 1_B \text{ (event } B)\text{].}
\end{cases}
\]
The conditional risks are given by the following equations,

\[R_0(\delta_{\pi_0}) = P_0(\Gamma_1) = \lambda_0 \mathbb{1}_B + (1 - \lambda_0) \mathbb{1}_A \]
\[R_1(\delta_{\pi_0}) = P_1(\Gamma_0) = (1 - \lambda_1) \mathbb{1}_{B^c} + \lambda_1 \mathbb{1}_{A^c} \tag{35} \]

The unconditional risk is given by

\[r(\pi_0, \delta_{\pi_0}) = \pi_0 \lambda_0 \mathbb{1}_B + \pi_0 (1 - \lambda_0) \mathbb{1}_A + (1 - \pi_0)(1 - \lambda_1)(1 - \mathbb{1}_B) + \\
(1 - \pi_0) \lambda_1 (1 - \mathbb{1}_A), \]

\[= (1 - \pi_0)(1 - \lambda_1) - \{(1 - \pi_0)(1 - \lambda_1) - \pi_0 \lambda_0\} \mathbb{1}_B + \\
(1 - \pi_0) \lambda_1 - \{(1 - \pi_0) \lambda_1 - \pi_0 (1 - \lambda_0)\} \mathbb{1}_A. \tag{36} \]

To proceed further, we need the following,

\[A = \left\{ \frac{\lambda_1}{1 - \lambda_0} \geq \frac{\pi_0}{1 - \pi_0} \right\} \text{ means event } A \text{ is true,} \]

\[B = \left\{ \frac{1 - \lambda_1}{\lambda_0} \geq \frac{\pi_0}{1 - \pi_0} \right\} \text{ means event } B \text{ is true.} \]

We know that,

\[f(a) = a \mathbb{1}_{\{a \geq 0\}}, \]

\[= (a)_+, \]

\[= \max\{a, 0\}. \tag{38} \]

So unconditional risk becomes

\[r(\pi_0, \delta_{\pi_0}) = (1 - \pi_0)(1 - \lambda_1) - \{(1 - \pi_0)(1 - \lambda_1) - \pi_0 \lambda_0\} + \\
(1 - \pi_0) \lambda_1 - \{(1 - \pi_0) \lambda_1 - \pi_0 (1 - \lambda_0)\} \]

\[= \min \left\{ (1 - \pi_0)(1 - \lambda_1), \pi_0 \lambda_0 \right\} + \min \left\{ (1 - \pi_0) \lambda_1, \pi_0 (1 - \lambda_0) \right\}. \tag{39} \]

Again if \(\pi_0 = 1 - \pi_0 \), i.e., \(\pi_0 = \frac{1}{2} \),

\[r\left(\frac{1}{2}, \delta_{\frac{1}{2}}\right) = \min \left\{ (1 - \lambda_1), \lambda_0 \right\} + \min \left\{ \lambda_1, (1 - \lambda_0) \right\}. \tag{40} \]
Minimax rule

From equation (39) there are only two possibilities as follows,
\[\pi_0(1 - \lambda_0) \leq \lambda_1(1 - \pi_0), \]
\[\pi_0 \lambda_0 \leq (1 - \pi_0)(1 - \lambda_1). \]

Now, we define the quantity \(\underline{\pi} \) and \(\overline{\pi} \),
\[\underline{\pi} = \min\left\{ \frac{\lambda_1}{1 - \lambda_0 + \lambda_1}, \frac{1 - \lambda_1}{1 - \lambda_0 + \lambda_1} \right\}, \]
\[\overline{\pi} = \max\left\{ \frac{\lambda_1}{1 - \lambda_0 + \lambda_1}, \frac{1 - \lambda_1}{1 - \lambda_0 + \lambda_1} \right\}. \]

The unconditional risk can be written as,
\[r(\pi_0, \delta_{\pi_0}) = \begin{cases}
\pi_0, & \text{if } \pi_0 \leq \underline{\pi}, \\
1 - \pi_0, & \text{if } \pi_0 \geq \overline{\pi}, \\
\pi + \left(\frac{1 - \pi - \pi}{\pi - \overline{\pi}}\right)(\pi_0 - \pi), & \text{if } \underline{\pi} < \pi_0 < \overline{\pi}.
\end{cases} \]

Say \(c = \left(\frac{1 - \pi - \pi}{\pi - \overline{\pi}}\right) \). Then, if \(c > 0 \) then \(\pi_L = \underline{\pi} \); if \(c < 0 \), then \(\pi_L = \overline{\pi} \); and if \(c = 0 \) then any \(q \) will work, where \(q \) is the probability of picking “one” at the threshold. So pick a randomized rule at the threshold.

Now recall that,
\[q = \frac{V'(\pi_L^+)}{V'(\pi_L^+) - V'(\pi_L^-)}, \]
where \(V'(\pi_0) \) is the derivative of \(V \) with respect to \(\pi_0 \). Now assume \(c > 0 \), then \(q = \frac{1}{\pi - \pi_L} = \frac{1}{1 - \pi}, \) which is clear from the figure 9. If \(\pi_L = \pi \), then \(V(\pi) = 1 - \pi > \underline{\pi}; \)

![Figure 9: \(V(\pi_0) \) for the binary channel](image)
and, if \(\pi_L = \overline{\pi} \), then \(V(\overline{\pi}) = \overline{\pi} > 1 - \overline{\pi} \).

\[
V(\pi_L) = \max\{\overline{\pi}, 1 - \overline{\pi}\}. \tag{44}
\]

Now, the decision rule is,

\[
\delta_{\pi_0}(y) = \begin{cases}
0, & \forall y \text{ if } \pi_0 \geq \overline{\pi}, \\
1, & \forall y \text{ if } \pi_0 \leq \overline{\pi}.
\end{cases} \tag{45}
\]

And if \(\pi_0 \in \{\overline{\pi}, \pi\} \),

\[
\delta_{\pi_0}(0) = \mathbb{1}_{A^c}, \\
\delta_{\pi_0}(1) = \mathbb{1}_B. \tag{46}
\]

Say \(c > 0 \), then by inspection, we have \(\pi_L = \overline{\pi} \) and \(\delta_{\pi_L}^+(y) = 0 \), \(\Gamma_1^+ = \emptyset \). The decision rule is,

\[
\delta_{\pi_0}(y) = \begin{cases}
y, & \text{if } \frac{1 - \lambda_1}{\lambda_1 - \lambda_0} \geq \pi_0 > \frac{\lambda_1}{1 - \lambda_0 - \lambda_1}, \\
1 - y, & \text{if } \frac{1 - \lambda_1}{\lambda_1 - \lambda_0} \geq \pi_0 > \frac{1 - \lambda_1}{\lambda_1 - \lambda_0 - \lambda_1}.
\end{cases} \tag{47}
\]