1. Let \mathbb{F} be a field of characteristic p and order $q = p^m$ for some integer $m \geq 1$.

 (a) Prove that (since p is a prime) p divides $\binom{p}{j}$ for $j = 1, 2, \ldots, p - 1$.

 (b) Prove that for any $\alpha, \beta \in \mathbb{F}$, we have $(\alpha + \beta)^p = \alpha^p + \beta^p$, and hence, by induction, $(\alpha + \beta)^{p^j} = \alpha^{p^j} + \beta^{p^j}$ for any $j \geq 1$.

 (c) Let $f(x) = \sum_{i=0}^{n} a_i x^i$ be a polynomial in $\mathbb{F}[x]$. Use part (a) and induction on the degree, n, to prove that $\left(f(x) \right)^q = f(x^q)$, meaning that

 \[\left(\sum_{i=0}^{n} a_i x^i \right)^q = \sum_{i=0}^{n} a_i (x^q)^i.\]

 (d) Use part (b) and induction on j to prove that $\left(f(x) \right)^{q^j} = f(x^{q^j})$ for any $j \geq 1$.

2. Let \mathbb{F} be a field of order q, and let \mathbb{K} be an extension field of \mathbb{F}. Let $\beta \in \mathbb{K}$ be a nonzero element of degree d over \mathbb{F}.

 (a) For positive integers j, prove that $\beta^{q^j} = \beta$ iff $d \mid j$. [Hint: Write $j = sd + r$ with $0 \leq r < d$.]

 (b) Deduce from (a) that if \mathbb{K} has order q^m, then $d \mid m$.

3. Let α be a primitive element in \mathbb{F}_{2^m}.

 (a) For $m > 2$, prove that the degree (over \mathbb{F}_2) of α^3 is equal to m. [Hint: If $d = \deg(\alpha^3)$, then ord(α^3) $\mid (2^d - 1)$. In particular, ord(α^3) $\leq (2^d - 1)$. From Problem 3 of HW assignment 6, we have that ord(α^3) $= \frac{2^m - 1}{\gcd(3, 2^m - 1)} \geq \frac{2^m - 1}{3}$. Combining these inequalities, deduce that $d > m - 2$. Now, using Problem 2(b) above, eliminate the possibility that $d = m - 1$.]

 (b) Generalize the argument above to show that for $1 \leq j \leq 2^{[m/2]}$, we have deg$_{\mathbb{F}_2}(\alpha^j) = m$.

4. Consider the code C consisting of all binary vectors in the nullspace of the matrix

 \[H = \begin{bmatrix}
 1 & \alpha & \alpha^2 & \alpha^4 & \alpha^5 & \alpha^6 & \alpha^7 & \alpha^8 & \alpha^9 & \alpha^{10} & \alpha^{11} & \alpha^{12} & \alpha^{13} & \alpha^{14} \\
 1 & \alpha^{-1} & \alpha^{-2} & \alpha^{-4} & \alpha^{-5} & \alpha^{-6} & \alpha^{-7} & \alpha^{-8} & \alpha^{-9} & \alpha^{-10} & \alpha^{-11} & \alpha^{-12} & \alpha^{-13} & \alpha^{-14}
\end{bmatrix},\]

 where α is a primitive element of \mathbb{F}_{2^4}.

 (a) What is the dimension of C?

 (b) What is the minimum distance of C? [Hint: $1 + \alpha^5 + \alpha^{10} = 0$.]