This assignment consists of two pages.

1. Consider the ISBN code

\[C = \{ (c_1, c_2, \ldots, c_{10}) \in \mathbb{F}_{11}^{10} : \sum_{i=1}^{10} ic_i \equiv 0 \pmod{11} \}, \]

which is a linear code over \(\mathbb{F}_{11} \).

(a) Determine the dimension and minimum distance of \(C \).

(b) Does \(C \) have a systematic generator matrix? Justify your answer.

2. Show that a linear code \(C \) of dimension \(k \) over \(\mathbb{F}_q \) has exactly

\[\prod_{j=0}^{k-1} (q^k - q^j) \]

distinct generator matrices.

[Hint: How many different ways are there of choosing the first row vector of \(G \)? Having chosen the first row vector, in how many ways can you choose the second row, and so on.]

3. Let \(C \) be the binary linear code with generator matrix

\[
G = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0
\end{bmatrix}
\]

(a) What is the minimum distance of \(C \)? Justify your answer.

(b) What is the minimum distance of \(C^\perp \)? Justify your answer.

(c) Give a parity-check matrix for \(C \).

4. Let \(C \) be a binary code of length 9 that consists of all \(3 \times 3 \) arrays of the form

\[
\begin{array}{ccc}
x_1 & x_2 & x_3 \\
x_4 & x_5 & x_6 \\
x_7 & x_8 & x_9 \\
\end{array}
\]

such that each row and column has even Hamming weight.

(a) Verify that \(C \) is a linear code.

(b) Determine the dimension and minimum distance of \(C \).

The above is an example of a product code. In general, the product of a length-\(n_1 \) block code, \(C_1 \), and a length-\(n_2 \) block code, \(C_2 \), is a code, \(C_{pr} \), whose codewords consist of all \(n_1 \times n_2 \) arrays in which the rows belong to \(C_1 \) and the columns to \(C_2 \). It is easy to see that if \(C_1 \) and \(C_2 \) are linear, then so is \(C_{pr} \).
5. Puncturing and shortening. Let C be an $[n, k, d]$ linear code over F with $1 < k < n$. For $i \in \{1, 2, \ldots, n\}$, define C_i to be the code

$$C_i \triangleq \{(c_1, c_2, \ldots, c_{i-1}, c_{i+1}, \ldots, c_n) : (c_1, c_2, \ldots, c_n) \in C\},$$

and define $C^{(i)}$ to be the code

$$C^{(i)} \triangleq \{(c_1, c_2, \ldots, c_{i-1}, c_{i+1}, \ldots, c_n) : (c_1, c_2, \ldots, c_{i-1}, 0, c_{i+1}, \ldots, c_n) \in C\}.$$

C_i and $C^{(i)}$ are said to be the codes obtained by, respectively, puncturing and shortening C at the ith coordinate.

(a) Show that if G' is obtained by deleting the ith column from a generator matrix G of C, then $C_i = \text{rowspace}(G')$.

(b) Show that if H' is obtained by deleting the ith column from a parity-check matrix H of C, then $C^{(i)} = \text{nullspace}(H')$. (In other words, a matrix obtained by deleting the ith column from any parity-check matrix of C is a parity-check matrix for $C^{(i)}$.)

(c) Argue that C_i is an $[n - 1, k_i, d_i]$ linear code with $k_i \geq k - 1$ and $d_i \geq d - 1$, and that $C^{(i)}$ is an $[n - 1, k^{(i)}, d^{(i)}]$ linear code with $k^{(i)} \geq k - 1$ and $d^{(i)} \geq d$.