1. Let \(\{N(t)\}_{t \geq 0} \) be a Poisson process of rate \(\beta > 0 \), and let \(Z_k \) denote the \(k \)th arrival time of the process. Prove that \(\lim_{k \to \infty} Z_k = \infty \) with probability 1.

Hint: For positive integers \(k \) and \(N \), define the event \(A_{k,N} = \{Z_k > N\} \), and let \(A_N \) denote the event \(\{A_{k,N} \text{ occurs for all sufficiently large } k\} \). In other words, \(A_N = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k,N} \). Use the Borel-Cantelli lemma to argue that \(P(\bigcap_{N=1}^{\infty} A_N) = 0 \). Now, complete the proof using the fact that the event \(\{\lim_{k \to \infty} Z_k = \infty\} \) can be expressed as \(\bigcap_{N=1}^{\infty} A_N \).

2. Packets arrive at the input of a channel according to a Poisson process of rate \(\lambda \), with \(0 < \lambda < \infty \). If the channel is empty when a packet arrives, it accepts the packet. The packet then stays in the channel for an amount of time \(T \) that is exponentially distributed with parameter \(\mu \), with \(0 < \mu < \infty \), i.e.,

\[
P(T > t) = e^{-\mu t} \quad \text{for all } t > 0.
\]

The time \(T \) is independent of the packet arrivals process. The channel can only hold one packet at a time, and there is no buffer at the channel input, so if a new packet arrives while the channel is occupied, the new packet gets dropped. Let \(X(t) \in \{0, 1\} \) denote the number of packets in the channel at time \(t \). It is easily seen that \(\{X(t)\}_{t \geq 0} \) is a continuous-time Markov chain (CTMC) on the state space \(\{0, 1\} \) (you do not need to verify this).

(a) Determine the sojourn time parameters \(a_0, a_1 \), the transition probability matrix \(P \) of the embedded DTMC, and the transition rate matrix \(Q \) of the CTMC.

(b) Is the CTMC regular? You must justify your answer.

(c) For \(j \in \{0, 1\} \), let \(S_{jj} \) denote the recurrence time, i.e., starting in state \(j \), the time it takes for the CTMC to leave state \(j \) and then return to it for the first time. Determine \(E[S_{jj}] \) for \(j \in \{0, 1\} \).

(d) Does the CTMC have a stationary distribution? If so, what is it?

3. Consider a birth-death process with \(\lambda_j = \mu_j = \gamma^{-j} \) for all \(j \geq 1 \), where \(\gamma \in (0, 1) \) is a constant. (Take \(\lambda_0 = 1 \).) Prove that the birth-death process is positive recurrent, while its embedded DTMC is null recurrent.

4. Consider a birth-death process with \(\lambda_j = \gamma^j \) for all \(j \geq 0 \), and \(\mu_j = \gamma^{j-1} \) for all \(j \geq 1 \), where \(\gamma \in (0, 1) \) is a constant. Prove that the birth-death process is null recurrent, while its embedded DTMC is positive recurrent.

Hint: To show that the embedded DTMC is positive recurrent, solve the reversibility conditions to obtain a stationary distribution.