1. Basic properties of variance.
 (a) Verify that \(\text{Var}(aX) = a^2 \text{Var}(X) \) for any \(a \in \mathbb{R} \).
 (b) Show that \(\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) + 2 \text{Cov}(X, Y) \).

2. Moment generating functions.
 (a) Determine the moment generating function of a random variable \(X \) having a \(\text{GEOM}(p) \) distribution, i.e., \(\mathbb{P}(X = k) = (1 - p)^{k-1} p \) for \(k = 1, 2, 3, \ldots \).

 Use the MGF to compute the first two moments of \(X \).

 (b) Verify that for an r.v. \(X \) taking values in \(\{ \pm 1, \pm 2, \pm 3, \ldots \} \), with \(\mathbb{P}(X = k) = (3/\pi)^{1/k^2} \), for \(k = \pm 1, \pm 2, \pm 3, \ldots \), the moment generating function \(M_X(t) \) is not finite for \(t \neq 0 \).

3. Characteristic functions.
 - Let \(\Phi_X \) denote the characteristic function of a random variable \(X \). Let \(W = a + X \) and \(Y = aX \) for some constant \(a \in \mathbb{R} \). Express the characteristic functions \(\Phi_W \) and \(\Phi_Y \) in terms of \(\Phi_X \).
 - Recall that the pdf of a Gaussian random variable \(Z \) with mean 0 and variance 1 is given by \(f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, \ z \in \mathbb{R} \).

 Compute the characteristic function of \(Z \).
 - From (a) and (b), deduce the characteristic function of a Gaussian rv with mean \(\mu \) and variance \(\sigma^2 \).

4. Let \(X_1, X_2, \ldots, X_n \) be \(n \) independent random variables, with each \(X_i \) satisfying \(\mathbb{P}(X_i = +1) = \mathbb{P}(X_i = -1) = 1/2 \).

 (a) Determine the mean and variance of \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \).
 (b) Use Chebyshev’s inequality to bound the probability \(\mathbb{P}(|\bar{X}| > \delta) \) for \(\delta > 0 \).
 (c) Use the Chernoff bounding technique to show that for \(0 < \delta < 1 \),

 \[
 \mathbb{P}(\bar{X} > \delta) \leq 2^{-n[1-h(\frac{\delta}{2\delta})]},
 \]

 where \(h(\cdot) \) is the binary entropy function defined by \(h(x) = -x \log_2(x) - (1 - x) \log_2(1 - x) \) for \(x \in [0, 1] \). Hence, by symmetry,

 \[
 \mathbb{P}(|\bar{X}| > \delta) = 2 \cdot \mathbb{P}(X > \delta) \leq 2 \cdot 2^{-n[1-h(\frac{\delta}{2\delta})]}.
 \]

 The point of this exercise is that the Chernoff bound yields an exponential decay in \(n \) for the tail probability of \(\bar{X} \), while Chebyshev’s inequality only yields a \(1/n \) decay.