This assignment consists of two pages.

1. The usual memoryless binary symmetric channel may be viewed as a channel of the form

\[Y_n = X_n \oplus Z_n, \quad n = 1, 2, 3, \ldots, \]

where \(X_n \in \{0, 1\} \) for all \(n \), \((Z_n)\) is an i.i.d. Ber\((p)\) sequence independent of \((X_n)\), and \(\oplus \) denotes modulo-2 addition. We know that the capacity of this channel is \(1 - H(p) \).

Now, consider a binary symmetric channel with memory, described as follows. At the beginning of time, a noise bit \(Z \) is randomly chosen according to a Ber\((p)\) distribution, and thereafter fixed for all time:

\[Y_n = X_n \oplus Z, \quad n = 1, 2, 3, \ldots. \]

Determine the capacity of this channel, where we now define capacity to be

\[C = \lim_{n \to \infty} \frac{1}{n} C_n, \]

with \(C_n = \max_{p(x^n)} I(X^n; Y^n) \), the maximum being taken over all pmfs \(p(x^n) \) on the input alphabet \(\{0, 1\}^n \).

2. Consider the function

\[f(x) = \begin{cases}
\frac{1}{x(\ln x)^2} & \text{if } x > e \\
0 & \text{otherwise}
\end{cases} \]

(a) Verify that \(f \) is a density function.

(b) Determine \(h(f) \).

3. (a) Let \(S \subseteq \mathbb{R} \), functions \(r_i(x) \), \(i = 1, 2, \ldots, m \), and constants \(\alpha_i \), \(i = 1, 2, \ldots, m \), all be given. Let \(\mathcal{F} \) represent the family of all densities \(f \) with the following properties:

- \(f(x) = 0 \) for all \(x \notin S \), i.e., \(\text{Supp}(f) \subseteq S \)
- \(\int_S f(x) \, dx = 1 \)
- \(\int_S r_i(x) f(x) \, dx = \alpha_i \), for \(i = 1, 2, \ldots, m \).

Now, let \(f^*(x) = \exp(\lambda_0 + \sum_{i=1}^{m} \lambda_i r_i(x)) \), where \(\lambda_0, \lambda_1, \ldots, \lambda_m \) are chosen so that \(f^* \) belongs to the family \(\mathcal{F} \). (Assume that such \(\lambda_i \)’s can indeed be chosen.) Prove that \(f^* \) uniquely maximizes the differential entropy \(h(f) \) over all densities \(f \in \mathcal{F} \).

(b) Let \(X \) be a non-negative random variable with \(\mathbb{E}[X] = \mu \), where \(\mu > 0 \) is a fixed constant. Show that \(h(X) \leq h(Z) \), where \(Z \sim \text{EXP}\left(\frac{1}{\mu}\right) \), i.e., \(Z \) has density \(f(z) = \frac{1}{\mu} e^{-z/\mu} \), \(z \geq 0 \).

(c) What happens if we remove the non-negative requirement on \(X \) in part (b)? In other words, what is \(\sup h(X) \), where the supremum is taken over all continuous random variables \(X \) with fixed mean \(\mathbb{E}[X] = \mu \).

4. Problem 8.8, Cover & Thomas, 2nd ed.

5. Problem 9.3, Cover & Thomas, 2nd ed.
7. Let $Y = X + Z$, where $X \sim \mathcal{N}(0, P)$, and Z is a random variable independent of X, with mean 0 and variance σ^2. Given an observation of Y, we want to estimate X.

(a) Among linear estimators $\hat{X}(Y)$ of the form $aY + b$, determine the estimator that minimizes the mean squared error $\mathbb{E}[(X - \hat{X}(Y))^2]$. What is the resulting minimum mean squared error?

(b) Give an upper bound on $h(X|Y)$ using the result of part (a). When is this bound tight?

8. Consider any continuous channel with additive noise as follows:

$$Y_n = X_n + Z_n,$$

where the noise sequence (Z_n) is iid with mean 0 and variance σ^2, and (Z_n) is independent of (X_n). Prove that the capacity, $C(P)$, of this channel, under an average input power constraint P, is greater than or equal to

$$\frac{1}{2} \log(1 + P/\sigma^2),$$

with equality iff the additive noise is iid $\mathcal{N}(0, \sigma^2)$.

Thus, among additive noise channels of fixed noise variance, the Gaussian channel has the least capacity. [Hint: Use the result of Problem 7(b).]