Quantum Information Technology

ECE Student Seminar Series
Indian Institute of Science Bangalore
Overview

» Quantum Computers
 » Quantum bits
 » Quantum gates
 » Bell States
 » Entanglement

» Quantum Communication
 » Quantum Teleportation
 » QKD
 » HD QKD
 » Recent developments
What is a Quantum Computer?

A Quantum computer is a computing device which harnesses quantum mechanical phenomena to process information.
Why do we need a Quantum Computer?

- “The chips are down for Moore’s law” Nature 530, February 11, 2016
Richard Feynman (1981):

“...trying to find a computer simulation of physics, seems to me to be an excellent program to follow out...and I'm not happy with all the analyses that go with just the classical theory, because nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem because it doesn't look so easy.”
History

- 1981 – Feynman proposes the idea of Quantum computation
- 1985 – David Deutsch develops the Quantum Computing Model
- 1994 – Peter Shor comes up with a quantum algorithm to factor very large numbers in polynomial time
- 1997 – Lov Grover develops a quantum search algorithm
The Quantum Bit - Qubit

The quantum “version” of classical bit

\[0 \rightarrow |0\rangle \quad 1 \rightarrow |1\rangle \]

Quantum Superposition \[|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle \]

Probability of getting 0 is \[|\alpha|^2 \]

Probability of getting 1 is \[|\beta|^2 \]

\[|\alpha|^2 + |\beta|^2 = 1 \]
The Quantum Bit - Qubit

\[\Psi = e^{i\gamma} \{ \cos \frac{\theta}{2} |0\rangle + e^{i\phi} \sin \frac{\theta}{2} |1\rangle \} \]

where \(\gamma, \theta, \phi \) are real numbers

Image courtesy: IBM
Multiple Qubits

\[|\Psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle \]
Quantum Gates (Single Qubit gates)

Pauli gates

\[
X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}; \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
\]

Hadamard gate

\[
H |0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}; \quad H |1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}; \quad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
\]
Multi Qubit Gates

C NOT Gate

Control

| \(|c\rangle \) | \(|c\rangle \) | \(\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \) | \(U \) |
Multi Qubit Gates

Toffoli gate [CCNOT Gate]

Control qubit 1
| c_1 \rangle

Control qubit 2
| c_2 \rangle

Target qubit
| t \rangle

$|c_1\rangle \quad \quad |c_2\rangle \quad \quad |t \oplus c_1 \cdot c_2\rangle$

Matrix representation:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
\]
Quantum Analogues of Classical gates

The quantum NAND

\[|x\rangle \quad |y\rangle \]

Classical circuit

quantum circuit

The quantum fanout

\[|x\rangle \quad |y\rangle \quad |1 \oplus x \cdot y\rangle \quad |0\rangle \]

Quantum circuit

\[|f\rangle \quad |g\rangle \]
DiVincenzo Criteria

- A scalable physical system with well characterized qubits.
- The ability to initialize the state of the qubits to a simple fiducial state.
- Long relevant decoherence times.
- A “universal” set of quantum gates.
- A qubit-specific measurement capability.
- The ability to interconvert stationary and flying qubits.
- The ability to faithfully transmit flying qubits between specified locations.
Bell Measurement
Quantum Entanglement

- Non local correlations exhibited by a set of qubits
- They cannot be expressed as product of 2 states

\[
|\Phi^+\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}
\]
\[
|\Phi^-\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}
\]
\[
|\Psi^+\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}
\]
\[
|\Psi^-\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}
\]
Quantum Teleportation

Ref: Nielsen and Chuang “Quantum Computation and Quantum Information”
Quantum Cryptography

- BB 84 Protocol
- E91 Protocol
BB84 Protocol
High Dimensional Quantum Cryptography

- Encode more information per quantum state
- Use “Qudits” instead of “Qubits”
 - Generalization of Qubit into d-state systems
When can we have them?

- Quantum Computers
 - Intel (2017)
 - Google (2019)
 - Volkswagen (tied up with Google)
 - Alibaba (2017)
 - NASA (2012)
When can we have them?

Image Courtesy: Center for Quantum Technologies, NUS, Singapore
When can we have them?

- Quantum Communications
 Chinese Satellite Micius
 (August 2016 by Jian Wei Pan’s group)

- Quantum Internet (2020)
Questions
THANK YOU!