When is a Function Securely Computable?

H. Tyagi1 P. Narayan1 P. Gupta2

1Department of Electrical and Computer Engineering and Institute of System Research University of Maryland, College Park, USA.

2Bell Labs, Alcatel-Lucent.
Secure Computing of Functions

\[F_1, F_2, F_a, F_m \equiv F: \text{Public Communication} \]

\[U_1, U_2, U_a, U_m \]

\[G_i^{(n)} = g(X_{\mathcal{M}}^n), \ i \in \mathcal{A} \]
\[I(g(X_{\mathcal{M}}^n) \land F) \approx 0 : \text{Secrecy} \]
\[\Pr \left(G_i^{(n)} = g(X_{\mathcal{M}}^n), \ i \in \mathcal{A} \right) \approx 1 : \text{Recoverability} \]

- Single-letter function: \(g(X_{\mathcal{M}}^n) = (g(X_{\mathcal{M}1}), \ldots, g(X_{\mathcal{M}n})) \).
- Notation: \(G = g(X_{\mathcal{M}}), \quad G^n = g(X_{\mathcal{M}}^n) \).

When is a given function \(g \) securely computable?
A Necessary Condition

Secret Key Generation

- Secret Key Capacity $C(A) \equiv$ Largest achievable rate of K.

[Csiszár-Narayan ‘04]

$$C(A) = H(X_M) - R(A),$$

$R(A) = \text{Min. sum rate of communication for omniscience at } A.$
A Necessary Condition

Secret Key Generation

COMMUNICATION NETWORK

\[F_1, F_2, F_a, F_m \]

- **F**: Public Communication
- **K**: Secret Key

\[I(K \wedge F) \geq 0 \]

- **A**

► **Secret Key Capacity** \(C(A) \equiv \text{Largest achievable rate of } K \).

[Csiszár-Narayan ‘04]

\[
C(A) = H(X_{\mathcal{M}}) - R(A),
\]

\[
R(A) = \text{Min. sum rate of communication for omniscience at } A.
\]

If \(g \) is securely computable by \(A \),

\[
H(G) \leq C(A).
\]
Is $H(G) < C(A)$ sufficient?

All terminals wish to compute: $A = M$ [TNG ‘10]

If $H(G) < C(M)$ ⇒ a protocol for SC of g by M exists.

- Noninteractive communication suffices.
- Randomization is not needed.
- Idea: Omniscience can be obtained using communication $\mathbf{F} \parallel \sim G^m$.
Is $H(G) < C(\mathcal{A})$ sufficient?

All terminals wish to compute: $\mathcal{A} = \mathcal{M}$ [TNG ‘10]

If $H(G) < C(\mathcal{M}) \Rightarrow$ a protocol for SC of g by \mathcal{M} exists.

- Noninteractive communication suffices.
- Randomization is not needed.
- Idea: Omniscience can be obtained using communication $\mathcal{F} \Downarrow G^n$.

Counterexample for $\mathcal{A} \subsetneq \mathcal{M}$

$g(x_1, x_1, x_2) = x_2$.

- Let $H(X_2) < H(X_1) = C(\mathcal{A}) \Rightarrow H(G) < C(\mathcal{A})$ is satisfied.

However, g is clearly not securely computable.
And Now For Something Completely Different

[Monty Python ’69]

It’s

A New Necessary Condition for Secure Computability
A New Necessary Condition

If G^n is securely computable by A:

Provide G^n as side information to terminals in A^c.

- Available only for decoding but not for communicating.

G^n forms a secret key for all terminals, termed an aided secret key.

- Let $C'_{g,A}(M)$ be that largest achievable rate of such a key.
A New Necessary Condition

If \(G^n \) is securely computable by \(\mathcal{A} \):

Provide \(G^n \) as side information to terminals in \(\mathcal{A}^c \).

- Available only for decoding but not for communicating.

\(G^n \) forms a secret key for all terminals, termed an aided secret key.

- Let \(C_{g,\mathcal{A}}(\mathcal{M}) \) be that largest achievable rate of such a key.

For a \(g \) securely computable by \(\mathcal{A} \),

\[
H(G) \leq C_{g,\mathcal{A}}(\mathcal{M})
\]
Aided Secret Key Capacity

Theorem

The aided secret key capacity is

\[C_{g,A}(M) = H(X_M) - R_{g,A}(M), \]

where

\[R_{g,A}(M) = \min \text{ sum rate of communication for omniscience at } M \]

when \(G^m \) is available as side information for decoding to terminals in \(\mathcal{A}^c \).
Characterization of Securely Computable Functions

Theorem

\textbf{If \(g \) is securely computable by \(A \): \(H(G) \leq C_{g,A}(\mathcal{M}) \).}

\textbf{Conversely, \(g \) is securely computable by \(A \) if: \(H(G) < C_{g,A}(\mathcal{M}) \).}

For securely computable function \(g \):

- Omniscience can be obtained at \(A \) using \(F \perp \parallel G^n \).
- Noninteractive communication suffices.
- Randomization is not needed.
Consider random binning of *appropriate rate* at each terminal:

- To allow omniscience at \mathcal{M}, with G^n given to the terminals in \mathcal{A}^c for decoding.
- To keep bin indices independent of G^n.

Sketch of the Proof
Sketch of the Proof

1. \(H(G) < C_{g,A}(\mathcal{M}) = H(X_{\mathcal{M}}) - R_{g,A}(\mathcal{M}) \)
\[\iff H(X_{\mathcal{M}} | G) > R_{g,A}(\mathcal{M}). \]
Sketch of the Proof

1. \(H(G) < C_{g,A}(\mathcal{M}) = H(X_\mathcal{M}) - R_{g,A}(\mathcal{M}) \)
\(\Leftrightarrow H(X_\mathcal{M} | G) > R_{g,A}(\mathcal{M}). \)

2. Generate random mappings \(F_i = F_i(X_i^n) \) of rate \(R_i \):
\[\sum_i R_i \approx R_{g,A}(\mathcal{M}) \text{ with } (R_1, ... , R_m) \text{ s.t.} \]
 - it enables omniscience at \(\mathcal{M} \) with side information \(G^n \)
 given to the terminals in \(\mathcal{A}^c \) only for decoding.
Sketch of the Proof

1. \[H(G) < C_{g,A}(\mathcal{M}) = H(X_{\mathcal{M}}) - R_{g,A}(\mathcal{M}) \]
 \[\iff H(X_{\mathcal{M}} | G) > R_{g,A}(\mathcal{M}). \]

2. Generate random mappings \(F_i = F_i(X^n_i) \) of rate \(R_i \):
 \[\sum_i R_i \approx R_{g,A}(\mathcal{M}) \text{ with } (R_1, \ldots, R_m) \text{ s.t.} \]
 - it enables omniscience at \(\mathcal{M} \) with side information \(G^n \) given to the terminals in \(\mathcal{A}^c \) only for decoding.

3. Observe: \[I(F_{\mathcal{M}} \land G^n) \leq \sum_{i} I(F_i \land G^n, F_{\mathcal{M}\{i\}}). \]
Sketch of the Proof

1. \(H(G) < C_{g,A}(\mathcal{M}) = H(X_{\mathcal{M}}) - R_{g,A}(\mathcal{M}) \)
 \[
 \iff H(X_{\mathcal{M}} | G) > R_{g,A}(\mathcal{M}).
 \]

2. Generate random mappings \(F_i = F_i(X_i^n) \) of rate \(R_i \):
 \[
 \sum_i R_i \approx R_{g,A}(\mathcal{M}) \text{ with } (R_1, \ldots, R_m) \text{ s.t.}
 \]
 - it enables omniscience at \(\mathcal{M} \) with side information \(G^n \)
 given to the terminals in \(A^c \) only for decoding.

3. Observe: \(I(F_{\mathcal{M}} \wedge G^n) \leq \sum_{i=1}^m I(F_i \wedge G^n, F_{\mathcal{M}\{i\}}) \).

4. To prove:
 With high probability \(I(F_i \wedge G^n, F_{\mathcal{M}\{i\}}) \approx 0 \), for each \(i \).
Independence Properties of Random Mappings
The Balanced Coloring Lemma

- To prove:
 With high probability $I \left(F_i \land G^n, F_{\mathcal{M}\setminus\{i\}} \right) \cong 0$, for each i.

- Shall show:
 For almost all (y, z):

 $$F_i \mid \{G^n = y, F_{\mathcal{M}\setminus\{i\}} = z\} \approx \text{uniform}.$$

- Family of distributions on X^n_i:
 $$\hat{P}_{X^n_i} \{G^n = y, F_{\mathcal{M}\setminus\{i\}} = z\}.$$

- Seek conditions for random mappings to be uniformly distributed
 - w.r.t. a given family of distributions.
Independence Properties of Random Mappings

The Balanced Coloring Lemma

- Balanced Coloring Lemma:
 [R. Ahlswede-I. Csiszár, '98], [I. Csiszár-P.N., '04]

 Given a family of distributions with probabilities uniformly bounded above,
 \[
 \Pr(\text{random coloring } \approx \text{uniform, w.r.t. all pmfs in the family}) \geq q,
 \]
 where \(q \) depends on the size of the family, the uniform bound and the rate of coloring.

- For the case at hand: a slightly generalized version is applied.
 - \(q = q(n) \) grows to 1 super-exponentially in \(n \).
Secure Computability of Multiple Functions

COMMUNICATION NETWORK

\[F_1 \quad F_2 \quad \cdots \quad F_m \equiv F: \text{Public Communication} \]

\[X^n_1 \quad X^n_2 \quad \cdots \quad X^n_m \]

Secrecy Condition: \(I(F \wedge G^n_1, \ldots, G^n_m) \approx 0. \)

Which functions \(g_1, \ldots, g_m \) are securely computable?

Omniscience is not allowed in general

- For \(m = 2 \):
 \[X_1 \perp \perp X_2 \quad g_i(x_1, x_2) = x_i. \]