Coverage in a Poisson-Boolean Model

- Motivation
- Let \(\Phi \) denote a homogeneous Poisson point process on \(\mathbb{R}^d \) of intensity \(\lambda \).
- \(\Phi(A) = \# \text{ of points falling in the set } A \subseteq \mathbb{R}^d \).
- \(\Phi(A) \sim \text{Poi}(\lambda |A|) \), where \(|A| \) = volume of \(A \).
- \[P[\Phi(A) = k] = e^{-|A|\lambda} \frac{|A|\lambda^k}{k!}, k = 0, 1, \ldots \]
- \(E[\Phi(A)] = \lambda |A| \)
- \(\lambda = \text{expected } \# \text{ of points falling in a unit volume} \).
- If \(A, B \subseteq \mathbb{R}^d \) are disjoint, then \(\Phi(A) \) and \(\Phi(B) \) are independent random variables.
- Let \(\Phi = \{X_1, X_2, \ldots\} \)
- \(B(x, r) = \text{ball of radius } r \text{ centered at } x \).
- \(|B(x, r)| = \theta \).

Def: The Poisson-Boolean model or the coverage process is defined as:
\[\mathcal{C} = \mathcal{C}(\lambda, r) = \bigcup_{i=1}^{\infty} B(X_i, r) \]

Def: The vacancy of a smooth bounded region \(R \subseteq \mathbb{R}^d \) is the region within \(R \) that is not covered by \(\mathcal{C} \), i.e.
\[V(R) = \int_{R^c} \frac{1}{x} \, dx \]
\[\left[\begin{array}{l} 1 \quad \text{if } x \in \mathcal{A} \\ 0 \quad \text{otherwise} \end{array} \right] \]
- \(E[V(R)] = E\left[\int_{R^c} \frac{1}{x} \, dx \right] = \int_{R^c} E\left[\frac{1}{x} \right] \, dx \)
- \(= \int_{R^c} \int_{R} P[x \notin \mathcal{C}^c] \, dx \)
- \(= \int_{R^c} P[\Phi(B(x, r)) = 0] \, dx \)
- \(= \int_{R^c} e^{-\lambda B(x, r)} \, dx \)
- \[E[V(R)] = |R| e^{-\lambda \theta^d} \]

Remark: So if we want not more than \(\kappa \) proportion of the region \(R \) to be vacant (not covered) on average, then \(\kappa e^{-\lambda \theta^d} \leq 1 \).
\[
E[V(R)^2] = E \left[\int_{\mathcal{C}^d} 1_{C^n(x)} \, dx \right]^2 \\
= \left[\int_{\mathcal{C}^d} \int_{\mathcal{C}^d} 1_{C^n(x)} 1_{C^n(y)} \, dx \, dy \right] \\
= \int_{\mathcal{C}^d} \int_{\mathcal{C}^d} P\{C^n(B(x,n) \cup B(y,n)) = 0\} \, dx \, dy \\
= \int_{\mathcal{C}^d} \int_{\mathcal{C}^d} 1 - 1_{B(x,n) \cap B(y,n)} \, dx \, dy \\
= e^{2\lambda \theta^n d} \int_{\mathcal{C}^d} \left(e^{2\lambda \theta^n d} 1_{B(x,n) \cap B(y,n)} \right) \, dx \, dy. \\
\text{Var}(V(R)) = e^{2\lambda \theta^n d} \int_{\mathcal{C}^d} \left(e^{2\lambda \theta^n d} 1_{B(x,n) \cap B(y,n)} \right) \, dx \, dy. \\
\]

\text{Theoretical Results:}

1) Strong Law: If \(\lambda \to \infty \) such that \(\lambda \theta^n d \to s > 0 \), then \(V(R) \to 1R1 e^{-s} \) almost surely.

2) \(\lambda \text{ Var}(V(R)) \to 0 \) as \(\lambda \to \infty \), \(\lambda \theta^n d \to s > 0 \).

\[
\text{CLT} \quad d\bar{\alpha} \left[V(R) - E[V(R)] \right] \to N(0, \sigma^2). \\
\]

\text{Extensions:}

1) Cox process
2) Poisson cluster process
3) k-coverage
4) On-off process

\text{Complete Coverage}

Q: How should \(\lambda \) scale with \(\lambda \) as \(\lambda \to \infty \) so that \(R \) is completely covered with probability approaching one?
II. PERCOLATION

Percolation refers to the existence of an infinite/giant component in a graph.

1. **Bond percolation in \(\mathbb{Z}^2 \)** (the random grid)

Graph \(G_p \) with vertex set \(V = \mathbb{Z}^2 \) & edge set

\[E_p = \{ \langle x, y \rangle : x, y \in \mathbb{Z}^2, |x - y| = 1 \} \]

Each edge is open w.r.t. \(p \) & closed w.r.t. \(1-p \), independent of other edges.

This yields the random graph \(G_p \)

\[E_p = \{ \langle x, y \rangle \in E : \langle x, y \rangle \text{ is open} \} \]

\[G_p = (\mathbb{Z}^2, E_p) \]

Def. A **bond path** is said to exist from \(u \in \mathbb{Z}^2 \) to \(v \in \mathbb{Z}^2 \) if

\[\langle u \rangle \to \langle v \rangle \text{ s.t. } \langle u \rangle = \langle u_0, u_1 \rangle, \langle v \rangle = \langle v_n, v_{n+1} \rangle \in E_p, \]

\[i = 0, \ldots, n \text{ s.t. } \]

Def. A **connected component** is a maximal set of vertices s.t. for any two vertices in the set there is a path from one to the other.

Def. The network \(G_p \) is said to **percolate** if it contains an infinite connected component.

\[\psi(p) = \Pr(\exists \text{ an infinite connected component in } G_p) \]

\[= \Pr(\text{G}_p \text{ percolates}) \]

Def. A phase transition is said to occur at a critical point \(p_c \in (0,1) \) if

\[\psi(p) = 0 \quad \forall p < p_c \quad \& \quad \psi(p) = 1 \quad \forall p > p_c. \]

Def. \(C(x) = \text{connected component containing } x \in \mathbb{Z}^2 \).

\[C(0) \]

\[|C(x)| = \text{cardinality of } C(x) \]

\[\theta(p) = \Pr_C(1 \leq |C(x)| = \infty) \]

- **percolation probability**

Thm. If \(0 < p_1 < p_2 < 1 \) then \(\theta(p_1) \leq \theta(p_2) \).

Thm. (Kesten 1980) \(p_c = \frac{1}{2} \)

Easy to show to \(\frac{1}{2} \leq p_c < \frac{3}{4} \)

- At most one infinite connected component

\[\psi(p) = 0 \quad \text{for } p \leq \frac{1}{2} \]

\[\psi(p) = 1 \quad \text{for } p > \frac{1}{2} \]

Th. \(\psi(p) = \Pr_{G_p}(1 \leq |C(0)| = \infty) \)

\[\leq \sum_{x \in \mathbb{Z}^2} \theta(x) = 0 \quad \text{if } p \leq p_c. \]

- **percolation** of \(G_p \) does not depend on the state of any finite collection of edges.

Kolmogorov's 0-1 Law \(\implies \psi(p) = 0 \) or 1

\[\psi(p) > 0 \implies \theta(p) > 0 \text{ if } p > p_c \]

\[\implies \psi(p) = 1 \text{ if } p > p_c. \]

Implication for finite Graphs

Let \(G_{n,p} \) be \(G_p \) restricted to edges in \([0, n]^2 \). Then for large \(n \), if \(p < p_c \) then components are of size \(O(\log n) \). If \(p > p_c \) then largest component is \(O(n) \) & second largest is \(O(\log n) \).
The Random Connection Model

\(\Phi_a \) be a homogeneous Poisson point process on \(\mathbb{R}^2 \) of intensity \(\lambda \).

\(g: \mathbb{R}^2 \rightarrow [0,1] \), \(g(x) \) depends only on \(|x| \) and is non-increasing.

Let \(\forall x, y \in \Phi_a \) be connected by an edge w.p. \(g(|x-y|) \).

Assumption: \(\int_{\mathbb{R}^2} g(x) dx < \infty \)

\(\mathbb{P}^x \) denote the Palm measure, i.e. the distribution of \(\Phi_a \) conditioned to have a point at \(x \).

Distribution of \(\Phi_a \) under \(\mathbb{P}^x \) is same as that of \(\Phi \cup \{x\} \) under \(\mathbb{P} \).

Let \(\tilde{\Phi} \) be the points of \(\Phi_a \) connected by an edge to \(x \) under \(\mathbb{P}^x \).

\(\tilde{\Phi} \) is a non-homogeneous Poisson point process of intensity \(2g(x) \).

\[E[\tilde{\Phi}(\mathbb{R}^2)] = \int_{\mathbb{R}^2} g(y) dy \]

The reason for the assumption above.

1. \(C \) = cardinality of component containing origin 0 under \(\mathbb{P}^0 \).

\[\Theta(\lambda) = \mathbb{P}^0(C = 0) \]

Thm: \(\forall \lambda \in (0, \infty) \), \(\Theta(\lambda) = 0 \) for \(\lambda < \lambda_c \) and \(\Theta(\lambda) > 0 \) for \(\lambda > \lambda_c \).

The Boolean Model

\[g(x) = \begin{cases} 1 & \text{if } |x| < 2r \\ 0 & \text{otherwise} \end{cases} \]

Average degree of a node (\(\xi \))

\[= 4\pi r^2 \lambda_c \]

Thm: \(i) \) Fix \(\lambda > 0 \). \(\forall \lambda_c > 0 \) s.t. \(\lambda_c > \lambda \), \(\Theta(\lambda) = 0 \) and \(\Theta(\lambda_c) > 0 \).

\(ii) \) Fix \(\lambda > 0 \). \(\forall \lambda_c > 0 \) s.t. \(\lambda_c > \lambda \), \(\Theta(\lambda) = 0 \) and \(\Theta(\lambda_c) > 0 \).

\(iii) \) Fix \(\lambda > 0 \). \(\forall \lambda_c > 0 \) s.t. \(\lambda_c > \lambda \), \(\Theta(\lambda) = 0 \) and \(\Theta(\lambda_c) > 0 \).

\[\lambda_c = 4\pi r^2 \lambda_c \approx 4.512 \]

Thm: Fix \(\lambda > 0 \). Let \(\lambda > \lambda_c \). \(R_{dn} \) denote a left-right crossing of a rectangle \(d_n \times d_n \) of sides \(d_n \times d_n \) for \(n \to \infty \). Then \(\mathbb{P}(R_{dn} \uparrow) \to 1 \) as \(n \to \infty \).

\[\mathit{d_n} \]

\[\uparrow \]

\[\downarrow \]

\[d_n \]

\[\uparrow \]

\[\downarrow \]
Almost Connectivity

\(\mathcal{E} \) - Homogeneous PPP(1) on \(\mathbb{R}^2 \)

\(B_n = \left[0, \frac{\pi}{\sqrt{n}} \right]^2 \)

\(G_n(\mathcal{E}) = \text{graph with vertex set } \mathcal{E} \cap B_n \text{ & edges between any two pairs \(\delta \) points within distance } 2\mathcal{E} \).

Remark: All results stated here hold for \(\mathcal{G}_n(\mathcal{E}) \) with vertex set \(\frac{1}{\sqrt{n}} \mathcal{E} \cap B_n \text{ & } \mathcal{G} = \frac{1}{\sqrt{n}} \).

\[N_\infty(B_n) = \# \text{ points in } \mathcal{E} \cap B_n \text{ that are part } \delta \text{ of the infinite component in the Boolean model with vertex set } \mathcal{E} \text{ & radius } \mathcal{E} \]

Call this graph \(G_n(\mathcal{E}) \)

Prop. \(\Theta(r) = 1^0 \) (origin percolates)

\[= E[N_\infty(B_1)] \]

Pf. Apply Campbell-Mecke formula.

Def. For any \(\alpha \in (0,1) \), \(G_n(\mathcal{E}) \) is said to be \(\alpha \)-almost connected if it contains a connected component \(C \) of at least \(\alpha n \) vertices.

Thm: Let \(\alpha^* = \inf \{ r : \Theta(r) > \alpha^2, \alpha \in (0,1) \} \)

If \(\alpha > \alpha^* \) then \(G_n(\mathcal{E}) \) is \(\alpha \)-almost connected a.a.s. & if \(\alpha < \alpha^* \) it is not.

Full Connectivity

\(\mathcal{E} \subset \text{PPP}{(1)} \) on \(\mathbb{R}^2 \)

\(B_n = \left[0, \frac{\pi}{\sqrt{n}} \right]^2 \)

\(\mathcal{E}_n = \mathcal{E} \cap B_n \)

To avoid edge effects, we will take metric on \(B_n \) to be the toroidal metric:

\[d_n(x,y) = \inf \{ d(x, y+z) \} \quad \forall x, y \in \mathbb{R} \]

\(G_n(\mathcal{E}) = \text{graph with vertex set } \mathcal{E} \cap B_n \text{ & edges between any two pairs of points vertices at dist. } \delta \leq 2\mathcal{E} \).

\(W_n = \# \{ \text{ isolated nodes in } G_n(\mathcal{E}) \} \)

\[E[W_n] = n \cdot \frac{\pi}{(2\pi)^2} \]

So if \(\frac{\pi}{(2\pi)^2} = \log n + \alpha \), \(\alpha \rightarrow \alpha^* \) then \(E[W_n] \rightarrow e^{-\alpha} \)

Remark: 1. For dense network, we should take \(e^{-\alpha} = \log n + \alpha \)

2. \(E[W_n] \rightarrow e^{-\alpha} \) of chance any node being isolated is tending to 0. Dependence is local.

Thm: If \(\pi(2\pi)^2 = \log n + \alpha \), \(\alpha \rightarrow \alpha^* \)

Then \(W_n \rightarrow Po(e^{-\alpha}) \)

\[TP(W_n = 0) \rightarrow e^{-e^{-\alpha}}, \alpha \in \mathbb{R} \]

Remark: Thus to eliminate isolated nodes we must have \(\alpha \rightarrow \infty \). Remarkably this suffices to connect the graph!!

Thm: If \(\pi(2\pi)^2 = \log n + \alpha \), then \(G_n(\mathcal{E}) \) is connected a.a.s. & if \(\alpha \rightarrow \infty \)
Interference Limited Networks

Static SINR Graph
(without fading)

\[\bar{\Phi} \sim HPPP(\lambda) \text{ on } TR^2 \]

\[l : TR^2 \times TR^2 \to TR_+ \text{ such that} \]

\[l(x, y) = h(|x - y|) \text{ for some} \]

\[h : TR_+ \to TR_+ \text{, cont. strictly decreasing on the set where it is positive} \]

\[\int_0^\infty h(x) dx < \infty \; ; \; h(0) = 1 + \frac{1}{2} \]

\[l : \text{path loss fn.} \]

\[\text{Let } P, T, N \text{ be parameters} \]

\[\gamma > 0. \]

\[\gamma > \frac{TN}{P} \]

\[I_{xy} = \sum_{\xi \in \Phi \setminus \{x, y\}} P l(|x - y|) \]

\[R_{xy} = \frac{P l(|x - y|)}{N + \gamma I_{xy}} , \; xy \in \Phi. \]

Def. The static SINR graph with vertex set \(\Phi \) and directed edge set

\[E = \{ (x, y) : x, y \in \Phi, R_{xy} > T^3 \} \]

\[|C| = \# \text{ points } \Phi \text{ in the cluster (component) containing the origin under } P^o. \]

Graph is said to percolate if

\[P^o(\text{containing a point}) > 0. \]

Note: i) Length of edges unit.

\[\text{bounded by } R(\frac{TP^1}{P}) \]

\[\gamma = 0 \text{ reduces the model to a standard Boolean model.} \]

iii) \(\gamma = 0 \) & fading we get the random connection model.

Prop. - For any \(\gamma > 0 \) any node in the static SINR graph is connected to at most \(1 + \frac{1}{2} \) neighbours.

Thm. - Let \(\lambda_c \) be the critical node density for the graph to percolate when \(\gamma = 0 \). For any node density \(\lambda > \lambda_c \), there exists a \(\gamma^*(\lambda) > 0 \) such that for any \(\gamma < \gamma^*(\lambda) \) the static SINR graph percolates.

Thm. - For \(\lambda \to \infty \) we have that \(\gamma^*(\lambda) = O(\frac{1}{\lambda}) \).

So as the intensity increases the interference effect dominates the opposing effect that facilitates formation of edges due to large availability of nodes.