Lecture 10

Review * Given a matrix A with each row denoting a d-dimensional data vector, let A_k denote the matrix obtained by projecting each row of A on the space spanned by right-singular vectors with k largest singular values. Then, for any k-rank matrix B,

$$\|A - A_k\|_F \leq \|A - B\|_F,$$

and

$$\|A - A_k\|_2 \leq \|A - B\|_2.$$

Agenda * (Contd.) Learning Gaussian mixtures

- Vempala-Wang projection for learning the span of the means $\{\mu_1, ..., \mu_k\}$.

1. SVD for estimating the span of means

$X_1, ..., X_n$ are iid from $\sum_{j=1}^n \omega_j N(\mu_j, \sigma^2 I_d \otimes I_d)$

Notation: A be the $n \times d$ matrix with the jth row x_j

- Given a space U, denote the projection of x on U by $\text{proj}_U x$ and the matrix obtained by projecting each row of A on U by $\text{proj}_U A$.

$$\|\text{proj}_U A\|_F = \sum_{i=1}^n \|\text{proj}_U A_i\|_2.$$

What will we show? (1) On average, the best k-dim space approximating A is $U = \text{span} \{\mu_1, ..., \mu_k\}$.
(2) With large prob., most of the energy of U is along V, the space spanned by the top k right singular values of A.

Theorem

Let $U = \text{span}\{u_1, \ldots, u_k\}$.

Let V be a linear space with $\dim(V) = \dim(U)$.

Then,

$$\mathbb{E}\left[\|\text{proj}_U A\|_F^2\right] \geq \mathbb{E}\left[\|\text{proj}_V A\|_F^2\right].$$

Proof. (a) Let $X = (X_1, \ldots, X_n)$ consist of uncorrelated entries.

Let $\mu = \mathbb{E}[X]$ and $\text{Var}(X_i) = \sigma^2$. Then,

$$\mathbb{E}\left[(X_i u_j)^2\right] = \sum_{i \neq j} \mathbb{E}\left[X_i X_j u_i u_j\right] + \sum_{i=1}^{n} \mathbb{E}\left[X_i^2\right] u_i^2$$

$$= \sum_{i \neq j} \mu_i \mu_j u_i u_j + \sum_{i=1}^{n} (\mu_i^2 + \sigma^2) u_i^2$$

$$= (\mu, u)^2 + \sigma^2 \|u\|_2^2$$

(b) For any r dimensional space V,

$$\mathbb{E}\left[\|\text{proj}_V X\|_F^2\right] = \|\text{proj}_V \mathbb{E}(X)\|_F^2 + \sigma^2 \|u\|_2^2$$

Indeed, let V_1, \ldots, V_n be an o.n. for V. Then,

$$\text{proj}_V X = \sum_{i=1}^{n} (X_i v_i) v_i$$

and

$$\|\text{proj}_V X\|_F^2 = \sum_{i=1}^{n} (X_i v_i)^2.$$

Thus,

$$\mathbb{E}\left[\|\text{proj}_V X\|_F^2\right] = \sum_{i=1}^{n} \mathbb{E}\left[(X_i v_i)^2\right].$$
\[= \sum_{i=1}^{\pi} (E[X_i, \mathcal{V}_i])^2 + n \sigma^2 \]
\[= \| \text{proj}_U E[X] \|_2^2 + n \sigma^2. \]

(c) Let \(A \) be the data matrix as before, generated from a mixture \(\sum_{j=1}^{k} \omega_j P_j \), where \((\mu_j, \sigma_j, I) \) denote the mean and covariance matrix for \(X_i \).

Then,
\[E[\| \text{proj}_U A \|_F^2] = n \sum_{j=1}^{k} \omega_j \left(\| \text{proj}_U \mu_j \|_2^2 + n \sigma_j^2 \right) \]

The relation above can be seen as follows:

Let \(N_j \) denote the number of samples from \(P_j \).

Thus,
\[E \left[\| \text{proj}_U A \|_2^2 \right] = E \left[\sum_{j=1}^{k} N_j \| \text{proj}_U Y_j \|_2^2 \right] \]
\[\text{where } Y_j \sim P_j \]
\[= E \left[\sum_{j=1}^{k} N_j \left(\| \text{proj}_U \mu_j \|_2^2 + n \sigma_j^2 \right) \right] \]
\[= \sum_{j=1}^{k} n \omega_j \left(\| \text{proj}_U \mu_j \|_2^2 + n \sigma_j^2 \right) \]

(d) Finally, we prove the theorem.

\[E \| \text{proj}_U A \|_2^2 - E \| \text{proj}_U A \|_F^2 \]
\[= n \sum_{j=1}^{k} \omega_j \left(\| \text{proj}_U \mu_j \|_2^2 - \| \text{proj}_U \mu_j \|_F^2 \right) \]
\[= n \sum_{j=1}^{k} \omega_j \left(\| \mu_j \|_2^2 - \| \text{proj}_U \mu_j \|_2^2 \right) \geq 0. \]
Remark. Note that while span \{\mu_1, \ldots, \mu_k\} captures the energy along the means, noise energy is spread evenly in all directions and any extra dimension used in \(V \) will capture it better.

Theorem. Let \(V \) denote the \(k \)-dimensional space spanned by the top \(k \) right-singular vectors of \(A \).

Then, if \(n = \mathcal{O}\left(\frac{d}{\sigma^2 \omega_{\text{min}}} \right) \), with large prob.

\[
\sum_{i=1}^{k} \omega_i \left(\| \mu_i \|_2^2 - \| \text{proj}_V \mu_i \|_2^2 \right) \leq \delta \left(d-k \right) \sum_{j=k+1}^{d} \omega_j \sigma_j^2.
\]

Proof. Involved. We need the following concentration result:

For a \(k \)-dimensional space \(V \) and \(X \sim N(\mu, \sigma^2 I) \),

\[
P \left(\| \text{proj}_V X \|_2 > (1+\epsilon) \mathbb{E} \left[\| \text{proj}_V X \|_2^2 \right] \right) < e^{-\epsilon^2 k/8}
\]

\[
P \left(\| \text{proj}_V X \|_2 < (1-\epsilon) \mathbb{E} \left[\| \text{proj}_V X \|_2^2 \right] \right) < e^{-\epsilon^2 k/8}
\]

\[
\rightarrow \text{Let's see an easy version:}
\]

\[
P \left((X, \sigma)^2 > (1+\epsilon)(\mu_0^2 + \sigma^2 \| \Sigma \|_2^2) \right)
\]

Assume \(\Sigma \) is unit norm. Then, \((X, \Sigma) \) is a Gaussian with mean \((\mu, \Sigma) \) and variance \(\sigma^2 \). Thus, the required prob. is simply \(P \left(Z^2 > (1+\epsilon)(\theta^2 + \sigma^2) \right) \) for \(Z \sim N(\theta, \sigma^2) \).

This concentration bound for Chi-square distribution is known. \(\blacksquare \)
Learning Gaussian mixtures

→ Distance based clustering

* We use first $\tilde{O}(d^4)$ samples and find the
 space V_k, the space spanned by the top k singular
 vectors of A.

* Now, take another set of n samples and form a new
 A. Project each row of \tilde{A} on V_k.

Note that the projected samples are k dimensional
and have means μ_i', μ_j' satisfying

$$\|\mu_i' - \mu_j'\|_2^2 \geq \|\mu_i - \mu_j\|_2^2 - \delta d \sigma^2$$

(ending the second

If we choose $\delta = \frac{1}{d}$ (use $\tilde{O}(d^4)$ samples),
we have $\|\mu_i' - \mu_j'\|_2^2 \geq \|\mu_i - \mu_j\|_2^2 - \sigma^2$,
which will allow us to use distance based clustering
to distinguish clusters if $\|\mu_i - \mu_j\|_2 = \Omega(\sqrt{k} \sigma^2)$.

→ Sphere for learning distributions

Quantize the coefficients $a_1, ..., a_k$ of the parameterized
space $V_k = \{ \sum_{i=1}^k \alpha_i v_i \}, (\alpha_1, ..., \alpha_k) \in \mathbb{R}^k$.

To limit our guesslist, we need to start with a bound
on $\max_i \|\mu_i - \mu_j\|_2$.