1) Properties of total variation distance
Consider two distributions P and Q on \mathcal{X}. Show the following properties of $d(P, Q) = \sup_A P(A) - Q(A)$.

(a) $d(P, Q) = d(Q, P)$.
(b) $d(P, Q) = \sup \left\{ \frac{1}{2} \sum_{i=1}^k |P(A_i) - Q(A_i)| : \{A_1, ..., A_k\} \text{ is a partition of } \mathcal{X} \right\}$.
(c) If P and Q have densities f and g w.r.t. μ,
$$d(P, Q) = \frac{1}{2} \int |f(x) - g(x)| \mu(dx),$$
and
$$d(P, Q) = P(\{x : f(x) \geq g(x)\}) - Q(\{x : f(x) \geq g(x)\}).$$

2) Bounds among distances and divergences
Consider two distributions P and Q such that $P \ll Q$. Denote by f the Raydon-Nikodym derivative of P w.r.t. Q (you can think of the discrete case where $f(x) = P(x)/Q(x)$).

The chi-squared divergence $\chi^2(P, Q)$ between P and Q is given by
$$\chi^2(P, Q) = E_Q \{(f(X) - 1)^2\}.$$ The squared Hellinger distance $H(P, Q)$ between P and Q is given by
$$H(P, Q) = \frac{1}{2} E_Q \{ (\sqrt{f(X)} - 1)^2 \}.$$ Establish the following bounds relating these distances to the total variation distance and the KL divergence

(a) $D(P||Q) \leq \chi^2(P, Q)$.
(b) $H^2(P, Q) \leq d(P, Q)^2 \leq H(P, Q)(2H(P, Q))$.

3) Pinsker’s inequality
Show that for $p, q \in [0, 1]$
$$|p - q|^2 \leq c \cdot \left(p \ln \frac{p}{q} + (1 - p) \ln \frac{1 - p}{1 - q} \right)$$ if and only if $c \geq 1/2$.

4) Estimating k-ary distribution
Let \mathcal{P}_k denote the $(k - 1)$-dimensional probability simplex. Consider the problem of estimating $P \in \mathcal{P}_k$ by observing n independent samples from P. Denote by \mathcal{F} the family of estimators $\hat{P} : \mathbb{X}^n \mapsto \hat{P}_{\mathbb{X}^n} \in \mathcal{P}_k$. Define the minimax risk $R(k, n)$ as
$$R(k, n) = \min_{\hat{P} \in \mathcal{F}} \max_{P \in \mathcal{P}_k} E_P \left\{ d(P, \hat{P}_{\mathbb{X}^n}) \right\}.$$
Find upper and lower bounds for $R(k, n)$.
(5) Bias of Estimators
For \(P \in \mathcal{P}_k \), let \(X_1, \ldots, X_n \) denote \(n \) independent samples from \(P \).

(a) (Estimating moments of a distribution) Find an unbiased estimator of \(\sum_{i=1}^k P(i)^l \) from \(n \) independent samples from \(P \), namely \(e : [k]^n \rightarrow \mathbb{R}_+ \) such that \(\mathbb{E}_P \{ e(X^n) \} = \sum_{i=1}^k P(i)^l \).

(b) (Missing mass estimation) Denote by \(N_x \) the number of times a symbol \(x \) appears in \(X^n \). Find an estimator \(e \) for the probability of missing mass \(M_n = \sum_{x : N_x = 0} P(x) \) such that \(\mathbb{E}_P \{ M_{n-1} \} \leq \mathbb{E}_P \{ e(X^n) \} \).

(c) (Linear estimators) Denote by \(n_l \) the number of symbols that appear \(l \) times, \(0 \leq l \leq n \). A linear estimator of a parameter has the form \(\sum_l a_l n_l \). For a given function \(f : [0, 1] \rightarrow [0, 1] \), consider the estimation of \(F(P) = \sum_{i=1}^n f(P(i)) \). Find the bias of a linear estimator for \(F(P) \).

(6) Sheffé estimators
Consider the following modification of the standard parametric estimation problem: Given a parametric family \(\mathcal{P} = \{ P_\theta, \theta \in \Theta \} \), we seek to estimate \(P_\theta \) by observing \(n \) independent samples \(X_1, \ldots, X_n \) from it. For a minimax-risk formulation with \(d(P_\theta, P_\theta') \) as the loss function, use Sheffé selectors to give estimators for the following problems and analyse their performances:

(a) \(\Theta = [0, 1], P_\theta = \text{Ber}(\theta), \theta \in \Theta \).
(b) \(\Theta = \mathbb{R}_+, P_\lambda = \text{Poi}(\lambda), \lambda \in \Theta \).