Lecture 8 (Cont'd)

Proof Sketch of the claim ①

\[\mathbb{E}_i [\mathbb{E}_i (Z)] = \mathbb{E} \left[\mathbb{E} [Z | X^{-i}] \right] | X^{i} \]

function only of \(X^{-i} \)

Let \(Z = f(A, B, C) \), \(A, B, C \) indep.

\[\mathbb{E} \left[\mathbb{E}[Z | AC] | AB \right] = \mathbb{E} \left[\mathbb{E}[Z | A] | AB \right] = \mathbb{E}[Z | A] \]

Other equivalent forms of Efron-Stein

Let \(\nu = \sum_{i=1}^{n} \mathbb{E} \left[\text{Var}_i (Z) \right] \).

Efron-Stein implies that \(\nu \) can be treated as the effective variance of \(Z \). The good thing is that \(\nu \) can be expressed as the sum of individual contributions across \(i = 1, 2, \ldots, n \). The next result gives two useful alternative forms of \(\nu \).

Lemma. (a) Let \(X' = (x_1', \ldots, x_n') \) be an independent copy of \(X \). Then,

\[\nu = \sum_{i=1}^{n} \mathbb{E} \left[(Z - Z_i')^2 \right] \]

where \(Z_i' = f(X_i, \ldots, X_{i-1}, X_i', X_{i+1}, \ldots, X_n) \).

(b) \(\nu = \inf_{\{Z_i\}} \mathbb{E} \left[(Z - Z_i)^2 \right] \),

where the inf. is over all square integrable func. of
Proof: Follows from the following 2 simple facts about variances:

(i) X and Y be iid

$$\text{Var}(X) = \frac{1}{2} \left[\text{IE} [(X-Y)^2] \right]$$

(ii) $\text{Var}(X|Y) = \text{IE} \left[(X - \text{IE}(X|Y))^2 \right]$

$$= \inf_{Z} \frac{\text{IE} \left[(X - Z)^2 \right]}{2} = \text{MMSE}(X|Z)$$

where the infimum is over all functions Z of Y.

Applying these observations to $\text{Var}(x_i, (Z))$ gives the result.

Corollary: If f satisfies BDP with $(c_1, ..., c_n)$

Then, $\text{Var}(f(x_1, ..., x_n)) \leq \sum_{i=1}^{n} \frac{c_i^2}{4}$

Proof: Use (b) with

$Z; i = \frac{1}{2} \left[\sup_{x_i \in X_i} f(x_i, x, x_i) + \inf_{x_i \in X_i} f(x_i, x, x_i) \right]$

Example: $Z = \text{length of the longest incr. subseq.}$

of $x_1, ..., x_n$

$\text{Var}(Z) \leq n \Rightarrow \text{P} \left(|Z - \text{IE}(Z)| > \sqrt{\frac{n}{\delta}} \right) \leq \delta$.
The first and the second moment methods

\[P(X \neq 0) = P(X \geq 1) \leq \mathbb{E}[X] \]

The "first-moment method"

Example: Consider an n-uniform hypergraph with m edges. If \(m < 2^{n-1} \) then \(\mathcal{H} \) is 2-colorable, i.e., there exists a coloring of vertices using 2 colors s.t. no hyperedge is monochromatic.

Indeed, consider a random 2-coloring of \(\mathcal{H} \) where each vertex is independently and uniformly colored using red/blue color. Let \(X \) denote the # of monochromatic edges. Then,

\[P(X \neq 0) \leq \mathbb{E}[X] = \sum_{e \in \mathcal{E}} P(e \text{ is monochromatic}) \]

\[= m \cdot 2^{-n+1} < 1. \]

For a r.v. \(X \) with \(\mathbb{E}[X] \neq 0, \)

\[P(X \leq 0) \leq P(|X - \mathbb{E}[X]| > \mathbb{E}[X]) \leq \frac{\text{Var}(X)}{[\mathbb{E}[X]]^2} \]

Improvement: \(\mathbb{E}[X]^2 = \mathbb{E}[X \mathbb{1}_{X \neq 0}]^2 \)
\[\leq \mathbb{E}[X^2](1 - \mathbb{P}(X = 0)) \]

\[\Leftrightarrow \mathbb{P}(X = 0) \leq \frac{\text{Var}(X)}{\mathbb{E}[X]^2} \quad (\text{Shepp's bound}) \]

The "second moment method"

The bounds above give bounds for the tail \(\mathbb{P}(X > 0) \) for nonnegative rv's.

Concentration around median using Efron-Stein

Quantiles of a distribution:

\[Q_\alpha = \inf \{ z : \mathbb{P}(Z \leq z) \geq \alpha \} : \alpha \text{-th quantile of } Z \]

\[M_Z \equiv \text{median of } Z = Q_{\frac{1}{2}} \]

Let \(q_k \) denote \(Q_{1-2^{-k}} \), i.e., \(\mathbb{P}(Z > q_k) \leq 2^{-k} \).

(i) \(\lim_{k \to \infty} q_k = \sup Z \)

(ii) Suppose \(q_{k+1} - q_k \leq c \) for every \(k \in \mathbb{N} \).

Then,

\[\mathbb{P}(Z > M[Z] + t) \leq 2^{-\frac{t}{c}} \]

Proof: Let \(k_t \) denote the \(k \) s.t.

\[q_{k_t} \leq t + q_1 \leq q_{k_t+1} \]

Then, \(q_{k_t+1} = q_1 + \sum_{i=1}^{k_t} (q_{i+1} - q_i) \leq q_1 + c k_t \)

\[\Rightarrow t \leq c k_t \]
Thus,

\[P(Z > M[z] + t) \leq P(Z > q_{k_t}) \]
\[\leq 2^{-k_t} \leq 2^{-t/c}. \]