Self-Bounding Function

Definition. A function \(f: \mathbb{R}^n \rightarrow [0, \infty) \) has the self-bounding property if there exist \(f_i(x_1, \ldots, x_i, \ldots, x_n) \) s.t.

1. \(0 \leq f(x) - f_i(x^i) \leq 1 \),
2. \(\sum_{i=1}^{n} (f(x) - f_i(x^i)) \leq f(x) \).

Clearly, for self-bounding functions

\[
\sum_{i=1}^{n} (f(x) - f_i(x^i))^2 \leq f(x)
\]

Corollary. For a self-bounding function \(f \), \(Z = f(x) \) satisfies

\[
\text{Var}(Z) \leq \mathbb{E}[Z^2].
\]

Definition (hereditary property, configuration functions)

A property \(\Pi \) is said to be hereditary if when a sequence satisfies it, any subsequence satisfies it as well.

A configuration function is given by \(f(x_1, \ldots, x_n) = \text{length of the longest subsequence satisfying a hereditary property } \Pi \).

Lemma. A configuration function is self-bounding.

Proof. Let \(f_i(x^i) = f(x_1, \ldots, x_i, \ldots, x_n) \). Then,

\[
0 \leq f(x) - f_i(x^i) \leq 1.
\]
Note that for a seq. $x = (x_1, \ldots, x_n)$ where the longest subseq. satisfying P_i is (x_i, \ldots, x_{i+k}), for every $i \neq \epsilon_1, \ldots, \epsilon_k$,
\[f(x) - f_i(x) = 0. \]
Therefore,
\[\sum_{i=1}^{n} f(x) - f_i(x) \leq k = f(x). \]

Examples of self-bounding functions

* longest increasing subsequence
* no. of distinct elements

Example (Maximum eigenvalue)

Consider a random matrix A with entries X_{ij}, $1 \leq i \leq j \leq n$, that are iid with $|X_{ij}| \leq 1$. Let Z denote the max. eigenvalue of A, i.e.,
\[Z = \sup_{u: \|u\|=1} u^T A u. \]
Then, \((Z - z_{ij})_+ \leq (v^T A u - v^T A_{ij} v) \mathbb{1}_{Z > z_{ij}} \)
\[= (v^T (A - A_{ij}) v) \mathbb{1}_{Z > z_{ij}} \]
\[\leq 2 \langle v, v \rangle (x_{ij} - x_{ij})_+ \]
\[\leq 4 |v, v|, \]
where v achieves Z for A. Thus,
\[\sum_{1 \leq i < j \leq n} (Z - z_{ij})_+ \leq 16 \sum_{1 \leq i < j \leq n} |v, v|^2 \leq 16. \]
The Entropy Method

Recall the recipe we used to show the concentration of Z around its mean using the Efron-Stein inequality:

\[\text{Var} \left(e^{\frac{Z^2}{2}} \right) \leq \frac{\lambda}{q} \mathbb{E} \left[e^{\frac{Z^2}{2}} \sum_{i=1}^{n} (Z - Z_i)^2 \right] \]

which implied

\[\psi_{Z-\mathbb{E}Z}(\frac{1}{\sqrt{q}}) \leq \log \frac{16}{\frac{\lambda}{q}} \]

Entropy method generalizes this recipe (we shall see in what sense) and yields stronger results than what we obtained earlier.

[] Step 1: Entropy and Herbst's argument

\[\text{Var}(X) = \mathbb{E} \left[g(X) \right] - g(\mathbb{E}[X]) \]

for $g(x) = x^2$.

Consider an alternative concave function $h(x) = x \log x$. Let $x > 0$ a.s.

\[\text{Ent}(x) \overset{\text{def}}{=} \mathbb{E} \left[h(X) \right] - h(\mathbb{E}[X]) \]
Lemma (Herbst's argument)

Let \(Z \) be a rv with \(\mathbb{E}[Z] < \infty \) s.t. there exists \(\nu > 0 \) for which

\[
(\#) \quad \frac{\mathbb{E}(e^{\lambda Z})}{\mathbb{E}[e^{\lambda^2 Z/2}]} \leq \frac{\lambda^{2 \nu}}{2}, \quad \forall \lambda > 0.
\]

Then, \(\forall \lambda > 0 \)

\[
\psi_{\mathbb{E}[Z]}(\lambda) \leq \frac{\lambda^{2 \nu}}{2}.
\]

Proof. The key observation is the following:

\[
\psi'(\lambda) = \frac{\mathbb{E}[Ze^{\lambda Z}]}{\mathbb{E}[e^{\lambda^2 Z/2}]},
\]

which implies

\[
\frac{\mathbb{E}(e^{\lambda Z})}{\mathbb{E}[e^{\lambda^2 Z/2}]} = \lambda \psi'(\lambda) - \psi(\lambda).
\]

Therefore, the Herbst's condition \((\#)\) is the same as

\[
\lambda \psi'(\lambda) - \psi(\lambda) \leq \frac{\lambda^{2 \nu}}{2},
\]

i.e., for \(G(\lambda) = \frac{\psi(\lambda)}{\lambda} \),

\[
G'(\lambda) \leq \frac{\nu}{2} \Rightarrow G(\lambda) - G(0) \leq \frac{\lambda^{2 \nu}}{2}.
\]

\[
G(0) = \lim_{\lambda \to 0} \frac{\psi(\lambda)}{\lambda} = \frac{\psi'(0)}{0} = 0.
\]

Thus, \(\psi(\lambda) \leq \frac{\lambda^{2 \nu}}{2} \).

\[\square\]
Step 2: Tensorization of HerbSTE argument

Suppose that we can establish (♯) for \(n = 1 \). Then,
\[
\frac{\text{Ent}^{(i)}(e^{\lambda x})}{\mathbb{E}^{(i)}[e^{\lambda x}]} \leq \frac{\lambda^2 \nu_i}{2} \left(\text{Ent}^{(i)}(y) \right) \frac{\lambda^2 \nu_i}{2} \left(\mathbb{E}^{(i)}[\mathbb{E}^{(i)}[y]] - h(\mathbb{E}^{(i)}[y]) \right)
\]

Suppose the counterpart of ES for \(\text{Var}(\cdot) \) holds, i.e.,
\[
\text{Ent}(e^{\lambda x}) \leq \sum_{i=1}^{n} \mathbb{E} \left[\text{Ent}^{(i)}(e^{\lambda x}) \right].
\]

Then, the bound for \(n = 1 \) yields
\[
\text{Ent}(e^{\lambda x}) \leq \sum_{i=1}^{n} \mathbb{E} \left[\frac{\lambda^2 \nu_i}{2} \mathbb{E}^{(i)}[e^{\lambda x}] \right]
\]
\[
= \frac{\lambda^2 \nu_i}{2} \left(\sum_{i=1}^{n} \right).
\]