(1) **Distinct values in an iid sequence**

Let X_1, \ldots, X_n be iid random variables taking positive integer values, and let Z_n be the number of distinct values taken by these random variables.

(a) Show that $\lim_{n \to \infty} \mathbb{E} \left[\frac{Z_n}{n} \right] = 0$, or in other words, $\mathbb{E} \left[\frac{Z_n}{n} \right] = o(n)$.

(b) Does Z_n satisfy the bounded differences property? If so, what can you conclude about the variance of Z_n (as a function of n)?

(c) Show that Z_n is in fact a self-bounding function. What can you now conclude about its variance as a function of n? Compare this to the conclusion of the previous part.

(2) **Order Statistics and variance**

Let X_1, \ldots, X_n be a sequence of independent random variables, and $X_{(1)} \leq X_{(1)} \leq \cdots \leq X_{(n)}$ a sorted version of the sequence ($X_{(i)}$ is known as the i-th order statistic).

(a) Show that $\text{Var}[X_{(n)}] \leq \mathbb{E} \left[\left(X_{(n)} - X_{(n-1)} \right)^2 \right]$.

(b) Compute the LHS and RHS of the inequality above, when all the X_i are iid Exponential(1).

(c) Repeat for all the X_i iid Uniform([0, 1]).

(3) **Jackknife estimators**

Let X_1, \ldots, X_n be an iid sequence of random variables (a “sample” of size n in statistics terminology). Suppose one has designed, for any n, an estimator $T_n \equiv T_n(X_1, \ldots, X_n)$ for a scalar parameter $\theta \in \mathbb{R}$ of the common probability distribution of the X_i. One often wants to know the quality of the estimator T_n (using only the sample). The jackknife is a method to estimate the bias $\mathbb{E} \left[T_n \right] - \theta$ and variance $\mathbb{E} \left[\left(T_n - \mathbb{E} \left[T_n \right] \right)^2 \right]$ of the estimator T_n.

For each $i \in [n]$, define the ith pseudo-value

$$Y_i := n T_n(X_1, \ldots, X_n) - (n - 1) T_{n-1}(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n).$$

The **jackknife estimate of the bias** of T_n is defined to be the difference between T_n and the sample mean of the pseudo-values, i.e., $\hat{B}_n := T_n - \frac{1}{n} \sum_{i=1}^n Y_i$, while the **jackknife estimate of the variance** of T_n is defined to be the sample variance of the pseudo-values Y_i, i.e., $\hat{V}_n := \frac{1}{n-1} \sum_{i=1}^n \left(Y_i - \frac{1}{n} \sum_{j=1}^n Y_j \right)^2$. (The general principle is to imagine the pseudo-values Y_i as representing “iid copies of T_n” and compute standard statistics on them.)

(a) Compute the jackknife estimate of the bias of the sample mean estimator $T_n := \frac{1}{n} \sum_{i=1}^n X_i$.

(b) For any estimator T_n, show that \hat{V}_n, the jackknife estimator of the variance of T_n, is always positively biased, i.e., $\mathbb{E} \left[\hat{V}_n \right] - \text{Var}[T_n] \geq 0$.

(4) Gradients of Lipschitz functions
Show that if a function \(f : \mathbb{R}^n \to \mathbb{R} \) is Lipschitz, with respect to the standard Euclidean norm on \(\mathbb{R}^n \), and differentiable, then the norm of its gradient is bounded by 1.

(5) Log-Sobolev is stronger than Poincaré
Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a bounded, continuously differentiable function. Show that the Gaussian logarithmic Sobolev inequality for \(f(X) \), with \(X \sim \mathcal{N}(0, I_{n \times n}) \), implies the Gaussian Poincaré inequality for \(f(X) \).

(6) Log-Sobolev for the exponential distribution
Let \(X \) be an exponentially distributed random variable with parameter 1, and let \(f : [0, \infty) \to \mathbb{R} \) be a continuously differentiable function. Show that \(\text{Ent}(f(X)^2) \leq 4 \mathbb{E}[X(f'(X))^2] \).