Reading Assignment

- Read Chapter 8 and Sections 9.1, 9.2, 9.4 of the Cover and Thomas book.

Homework Questions

Only the first 4 questions will be graded.

Q1 Consider a DMC $W : \mathcal{X} \rightarrow \mathcal{Y}$, and let $C(W)$ denote its capacity. We cascade W with an erasure channel with input alphabet \mathcal{Y} and output alphabet $\mathcal{Y} \cup \{e\}$. For each input $y \in \mathcal{Y}$, the erasure channel produces the output y with probability $(1 - \alpha)$ and the output e with probability α. Determine the capacity of the combined channel with input \mathcal{X} and output $\mathcal{Y} \cup \{e\}$.

Q2 Consider a Binary Symmetric Channel with crossover probability ϵ. A code of length n and size 2^k for this channel is said to be an (n,k,d) code if the minimum number of bits in which two codewords differ is d, i.e., any two codewords differ in no less than d-bits and there is a pair of codewords that differs in exactly d bits. Consider the minimum distance decoder which decodes a received binary vector to the nearest codeword (in case of clash, a codeword is chosen at random).

a) Find an upper bound for the maximum probability of error for an (n,k,d) code with minimum distance decoder in terms of $n,k,d,$ and ϵ. Your bound should make itself amenable to the next part.

b) Consider a sequence of $(n,nR,n\delta)$ code with the minimum distance decoder, i.e., a code of rate R and minimum distance scaling linearly with the length n. Using your bound in the previous part, for a fixed $R > 0$, determine an allowed range for the value of $\delta > 0$ such that the maximum probability of error for this code goes to 0 as n goes to ∞.

Q3 Consider two DMCs $W_1 : \mathcal{X} \rightarrow \mathcal{Y}_1$ and $W_2 : \mathcal{X} \rightarrow \mathcal{Y}_2$ with the same input alphabet \mathcal{X}; let their capacities be C_1 and C_2, respectively. Consider a new DMC $\tilde{W} : \mathcal{X} \rightarrow \mathcal{Y}_1 \times \mathcal{Y}_2$ with input alphabet \mathcal{X} and output alphabet $\mathcal{Y}_1 \times \mathcal{Y}_2$ defined by

$$\tilde{W}(y_1,y_2|x) = W_1(y_1|x)W_2(y_2|x).$$

Let \tilde{C} be the capacity of the DMC \tilde{W}.

a) Establish a relationship between $\tilde{C}, C_1,$ and C_2.

b) Provide an example where \tilde{C} is strictly larger than both C_1 and C_2.

Q4 (a) For a DMC W, consider a sequence of codes (f_n, ϕ_n) length n, rate R and with average probability of error $\epsilon_n \rightarrow 0$ in the limit as $n \rightarrow \infty$. For a fixed length n, let M_n denote
a random message distributed uniformly over 2^{nR} messages, and let $Y_1, ..., Y_n$ denote the corresponding channel outputs. Using Fano’s inequality, show that
\[
R = \lim_{n \to \infty} \frac{1}{n} I(M_n \wedge Y^n).
\]

(b) Using the previous part, show that for codes with feedback of rate R with average probability of error approaching 0,
\[
R = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} I(X_i \wedge Y_i|Y_1, ..., Y_{i-1}),
\]
where $X_1, ..., X_n$ denote the random channel inputs corresponding to a uniformly distributed message. Conclude that feedback capacity is no more than $\max P I(P; W)$.

Q5 (Alternative Random Coding Argument.) For a DMC $W: \mathcal{X} \to \mathcal{Y}$, consider a randomly chosen code C of size $N = 2^{nR}$ where the codewords $X_1, ..., X_N$ are chosen i.i.d. uniformly over the typical set $\mathcal{T}_P \subset \mathcal{X}^n$. Consider this random code with the conditional typical decoder described below:

\[
\phi(y) = i \quad \text{if } X_i \text{ is the unique codeword such that } y \in \mathcal{T}_W(X_i); \quad \text{if no such codeword is found, or if more than one such codewords are found, an error is declared.}
\]

Denote by $\epsilon(C)$ the average probability of error for the code C. For $R < I(P; W)$, we shall show that the expected average probability of error $E_C[\epsilon(C)] \to 0$ in the limit $n \to \infty$, i.e.,
\[
\lim_{n \to \infty} E_C[\epsilon(C)] = 0. \tag{1}
\]
To that end, for output $Y^n = (Y_1, ..., Y_n)$ of the channel, denote by \mathcal{E}_i the event
\[
\mathcal{E}_i = \{Y^n \in \mathcal{T}_W(X_i)\}, \quad 1 \leq i \leq N.
\]

(a) Show that
\[
\lim_{n \to \infty} P(\mathcal{E}_1|1 \text{ is sent}) = 0.
\]

(b) Let V denote the conditional distribution $P_{X|Y}$ for the joint distribution $P_{XY}(x,y) = P(x)W(y|x)$. Show that for $i \neq 1$,
\[
\mathcal{E}_i = \{X_i \in \mathcal{T}_W(Y^n)\},
\]
and conclude that
\[
P(\mathcal{E}_i|1 \text{ is sent}, X_1 = x) = \frac{|\mathcal{T}_W(x)|}{|\mathcal{T}_P|}.
\]

(c) Finally, conclude (1) from the two observations above and proceeding as in the random coding proofs done in the class.

\[1\text{If you want to be rigorous, you need to show that the limit on the right exists. Otherwise, you can just assume this fact.}\]
Consider jointly Gaussian random variables \((Z_1, Z_2)\) with zero mean and covariance matrix

\[
K = \sigma^2 \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}.
\]

Consider a channel \(W\) with input \(\mathbb{R}\) and output \(\mathbb{R}^2\) such that for every input \(x \in \mathbb{R}\) the channel output \((Y_1, Y_2)\) is given by

\[
Y_i = x + Z_i, \quad i = 1, 2.
\]

(a) Following the steps of the proof for AWGN channel capacity done in the class, determine the capacity \(C_P(W)\) for codes with codewords \(x \in \mathcal{X}^n\) satisfying the average power constraint

\[
\frac{1}{n} \sum_{i=1}^{n} x_i^2 \leq P.
\]

(b) Find the capacity \(C(W)\) for the cases (i) \(\rho = 1\), (ii) \(\rho = 0\), and (iii) \(\rho = -1\).