Reading Assignment

Homework Questions

Q1 a) A coin shows heads with (unknown) probability \(p \). When it was tossed 1000 times, 400 heads were observed. Find the maximum likelihood estimate of \(p \), i.e., find \(p \) that maximizes the probability of 400 heads showing up in 1000 tosses.

b) Suppose a sequence \(x = (x_1, ..., x_n) \) is observed in \(n \) independent draws from a (unknown) pmf \(P \). Find the maximum likelihood estimate \(\hat{P} \) of \(P \) defined as

\[
\hat{P}(x) = \arg\max_{P} P^n(x).
\]

Q2 For the binary alphabet \(\mathcal{X} = \{0, 1\} \), the type of a sequence \(x = (x_1, ..., x_n) \in \mathcal{X}^n \) is determined by its Hamming weight \(w(x) \) = number of 1’s in \(x \). Specifically, a sequence \(x \) is of type \(p \in [0, 1] \cap \mathbb{Q} \) if it has weight \(np \).

Prove the following bounds, which are a special case of the general results derived in class applied to the special case of binary alphabet. (Don’t just cite the results derived in the class; give a complete proof).

a) Consider a pmf \(P \) on \(\mathcal{X} \) such that \(P(1) = p \). Then, for every sequence \(x \in \mathcal{X}^n \) of type \(q \),

\[
P^n(x) = 2^{-n[D(q||p)+h(q)]},
\]

where \(h(q) = -q \log q - (1-q) \log (1-q) \) is the binary entropy of \(q \) and the binary divergence function \(D(q||p) \) is given by \(q \log \frac{q}{p} + (1-q) \log \frac{1-q}{1-p} \).

b) Denote by \(\mathcal{T}_q \) the set of all \(n \)-length binary sequences of type \(q \). Show that

\[
\frac{2^{nh(q)}}{(n+1)} \leq |\mathcal{T}_q| \leq 2^{nh(q)}.
\]

c) How many types \(q \) are there such that the number of sequences of type \(q \) does not grow exponentially in \(n \)?

Q3 For a pmf \(P \) on a finite alphabet \(\mathcal{X} \), show that

\[
P^n \left(\{ x : D(P_x||P) > \epsilon \} \right) \leq (n+1)^{|\mathcal{X}|} 2^{-n\epsilon}.
\]

Q4 Consider a DMS with a finite alphabet \(\mathcal{X} \) and common distribution \(P \). For \(n \geq 1 \), show that for every type \(Q \) and every \(x \in \mathcal{T}_Q \)

\[
2^{-nH(Q)} \leq P \left(X^n = x | X^n \in \mathcal{T}_Q \right) \leq (n+1)^{|\mathcal{X}|} 2^{-nH(Q)}.
\]