E2 201: Information Theory (2015)
Homework 1
Instructor: Himanshu Tyagi

Reading Assignment

• Verify that Lemma 1 and Lemma 2 proved in the class hold even when the discrete alphabet \(\mathcal{X} \) is not finite.

Homework Questions

Instructions: You can either answer Q1-Q4 or the (*) question

Consider three sources \(X_1, X_2 \) and \(X_3 \), all with a common alphabet \(\mathcal{X} = \{0, 1\}^{10} \). The first source produces all sequences with equal probability, i.e.,

\[
P_{X_1}(x) = 2^{-10}, \quad \text{for all } x \in \{0, 1\}^{10}.
\]

The second source only produces sequences starting with 00000, each with equal probability, i.e.,

\[
P_{X_2}(x_1, \ldots, x_{10}) =
\begin{cases}
2^{-5}, & \text{if } x_1 = x_2 = x_3 = x_4 = x_5 = 0, \\
0, & \text{otherwise}.
\end{cases}
\]

Let \(X_3 \) be a uniform mixture of sources \(X_1 \) and \(X_2 \), i.e.,

\[
P_X(x) = \frac{1}{2}P_{X_1}(x) + \frac{1}{2}P_{X_2}(x), \quad \text{for all } x \in \mathcal{X}.
\]

Q1 Determine the entropies \(H(X_1), H(X_2), \) and \(H(X) \).

Q2 For \(\epsilon = 0.01 \), determine \(L_\epsilon(X_1) \) and \(L_\epsilon(X_2) \).

Q3 For \(\epsilon = 0.01 \), using Lemma 1 and Lemma 2 proved in the class find bounds for \(L_\epsilon(X_3) \). Does \(L_\epsilon(X_3) \) equal \(H(X_3) \)?

Q4 Denote by \(X_1^n, X_2^n \), and \(X_3^n \) discrete memoryless sources (DMSs) with common distributions \(P_{X_1}, P_{X_2}, \) and \(P_{X_3} \), respectively. Let \(\epsilon = 0.01 \). For each of the DMS above, determine \(R^*_\epsilon \), the least \(\epsilon \)-achievable rate of a source code.
For a pmf P, the Rényi entropy P of order $\alpha > 0, \alpha \neq 1$, is defined as

$$H_\alpha(P) \overset{\text{def}}{=} \frac{1}{1-\alpha} \log \sum_{x \in X} P(x)^\alpha.$$

Consider a source X with pmf P. Let $0 < \epsilon < 1$. Using Lemma 1 and Lemma 2 from the class, show that for every $0 < \alpha < 1$

$$L_\epsilon(X) \leq H_\alpha(P) + \frac{1}{1-\alpha} \log \frac{1}{\epsilon} + 1.$$

Furthermore, for every $\beta > 1$ and $0 < \delta < 1 - \epsilon$,

$$L_\epsilon(X) \geq H_\beta(P) - \frac{1}{\beta-1} \log \frac{1}{\delta} - \log \frac{1}{1-\epsilon-\delta}.$$

[Hint: Verify the assumptions of Lemma 1 for $\lambda = H_\alpha(P) + (1-\alpha)^{-1} \log(1/\epsilon)$ and of Lemma 2 for $\lambda' = H_\beta(P) - (\beta - 1)^{-1} \log(1/\delta).$]