Topics in the Modeling, Analysis, and Optimisation of
Signalised Road Intersections

A Project Report
Submitted in partial fulfilment of the
requirements for the Degree of
Master of Engineering
in
Telecommunications

by

Pramod MJ

under the guidance of
Prof. Anurag Kumar

Electrical Communication Engineering
Indian Institute of Science
BANGALORE – 560 012

June 2013
Abstract

A network of roads carries vehicular traffic, and to a communication network engineer it would look similar to a packet network. Long stretches of roads would seem similar to communication links, whereas signalised intersections would appear similar to packet switching devices. Indeed, for several decades, traffic engineers have brought to bear congestion theory (stochastic and deterministic) to model and analyse the flow of traffic on roads. With the possibility of Intelligent Transportation Systems (ITS) becoming a reality in the not too distant future, increasing attention is now being paid to the modeling, analysis, inference, and control of traffic in road networks.

With this background in mind, in this thesis we first revisit the problem of congestion modeling at a signalised traffic intersection. An incoming road at such an intersection can be viewed as a queue with an interrupted server. Due to car following behaviour, a special feature in the case of road traffic is that the clearance times of successive vehicles at an intersection are dependent. With this in mind, our first aim in the work reported here has been to develop an approximation for the expected delay of vehicles at a segment of road served by a traffic light, where we assume a Semi Markov (SM) car-following model. Assuming a Poisson arrival process of a mix of vehicles, we call this an interrupted M/SM/1 queue. The interrupted M/G/1 (more precisely, the interrupted M/GI/1 queue) has been well studied. Also, in the traffic engineering literature there is a popular approximation for the mean delay in an interrupted M/D/1 queue, i.e., the Webster formula. We use the analysis of Sengupta [17] to (i) develop an understanding of the various terms in Webster’s formula, and (ii) develop extensions of this formula to the M/G/1 and M/SM/1 interrupted queues. The quality of the approximations is illustrated by several
numerical examples.

We also complement the above work with optimisation of signal timing, a study of tandem intersections, and a study of the effect of batching due the behaviour of two wheelers in typical Indian traffic conditions.
Acknowledgement

I would like to offer my special thanks to all those who provided me the possibility to complete this thesis.

I owe my deepest gratitude to Prof. Anurag Kumar. I would like to thank him for the guidance he provided me throughout this work. He has been an inspiration not just in my academic life. I also thank him for the patience he showed while helping during the writing of this thesis.

I thank my parents for their blessings and unwavering support.

I would like to thank my friends (there are too many of them, for me to name here), especially Ashok Krishnan, for the help and support they provided during the completion of this work.
Contents

1 Introduction 1

2 Literature Survey 4

3 Modeling the Queues at a Traffic Intersection 11

3.1 Queueing and Service at a Traffic Intersection 12

3.1.1 Arrival Process Model ... 14

3.1.2 Service Model .. 15

3.2 Relation to the PCU terminology: 22

3.3 Traffic Intersection Simulation ... 24

3.4 Example Traffic Models .. 26

3.5 Preemptive service vs. nonpreemptive service 28

3.6 Service of the First Arrival in a Busy Period 30

3.7 Stability Criterion .. 33

4 Analysis of Queues at Traffic Intersections 35

4.1 Mean Delay Analysis - Preliminaries 36
4.2 The Analysis in Sengupta [17] .. 39

4.2.1 Mean Work in the System .. 40

4.2.2 Mean Waiting Time .. 42

4.2.3 Approximations for Mean Delay .. 44

4.2.4 Numerical Comparison Between Various Approximations 46

4.2.5 Comparison between the Approximation [4.19] and Simulation 51

4.3 Webster’s Approximation .. 55

4.3.1 What is Webster’s Formula Approximating? 57

5 Understanding and Extending Webster’s Formula 61

5.1 Understanding Webster’s Approximation .. 61

5.2 Extending Webster’s Approximation to M/G/1 and M/SM/1 models 65

5.2.1 Extending Webster’s Approximation to M/G/1 model 65

5.2.2 Extending Webster’s Approximation to M/SM/1 model 66

5.3 Numerical Study of Extensions of Webster’s model 68

5.4 Variants of Webster’s Approximation .. 72

5.4.1 Webster Variant I: Modified first term and correction term 72

5.5 Conclusion .. 76

6 Optimisation of Signal Timings .. 77

7 Tandem Queues .. 80

8 Extending Modeling and Analysis to Motorcycle Traffic 86
CONTENTS

8.1 Motorcycles at a Signalized intersection .. 86

8.2 Analysis of Queues containing Motorcycles at a Signalized intersection 89

9 Future Work ... 102

Bibliography ... 103
Chapter 1

Introduction

An Intelligent Transportation System (ITS) refers to the use of measurement, modeling, inference, and control techniques for the management of road networks. Examples of ITS applications would be: passenger information systems for a city bus service, on-line optimisation of traffic signal timing for traffic flow management, and decision support system for situation management following a road blockage due to an accident or breakdown. Thus, with ITS in mind, in this thesis we report our study of analytical modeling of congestion at a signalised traffic intersection. While this is a classical topic [10, 11, 12, 21], it is the first topic that would be undertaken in any research effort on modeling of road networks. Further, even this classical topic could do with some additional research in removing some of the simplifications in earlier models, and in developing new models for the peculiar traffic conditions that exist in developing countries, such as India.

An intersection is a junction where two or more roads cross, and is generally controlled by traffic signals. The congestion phenomenon at an intersection is governed by parameters such as the durations of the red and green periods, the arrival rates of the vehicles, and the rate at which vehicles can exit the intersection during the green time. An understanding of such congestion phenomena, and the design of signal timing as to optimise the delay at an intersection, are basic questions in any road network analysis and design.
CHAPTER 1. INTRODUCTION

The road network bears close resemblance to a packet network with the long stretches of roads and the intersections being similar, respectively, to the communication links and the packet switches. If we consider a signalised intersection with 4 stretches of roads bringing traffic to the intersection, then with the assumption that free left turns are not allowed, we can consider them each to be a queue with interrupted service. In an interrupted queue the server performs service for a random duration of time and then remains idle for a random duration of time. This cycle continues irrespective of whether the queue is empty or not. This provides the motivation to use queuing models to analyse a signalised intersection. We will look at some of the currently used analytical models for analysing various models of traffic at an intersection. The approximation by Webster is the most commonly used one, though we will find that it only models the deterministic service model. We will then suggest improved approximations for all the models that we will be studying.

Keeping in mind the car-following behavior, we model the service process as a Semi-Markov (SM) model. We will also be looking at simplified service models derived from the SM models, such as the deterministic model, where all the vehicles are assumed to take the same service time, which would be the mean service time calculated over all types of vehicles in the network; the general independent model, where the service times of successive vehicles are independent and are drawn from a general distribution. We study analytical models which provides approximations for the mean delay estimation problem. The quality of the approximations are illustrated by comparing them with the simulation results. Extensions of Webster’s formula are suggested, which provides good approximations M/G/1 and M/SM/1 interrupted queue models at signalised intersections. Optimisation of signal timings are done for M/D/1 and M/G/1 models using the approximations for mean delay. We further proceed to estimate the mean delay at a two-stage tandem queue, where both the intersections are assumed to be M/D/1 interrupted queues. Given that in developing countries such as India, 2 wheelers, which are prone to batching with larger vehicles while waiting at the intersection, form the bulk of the traffic, we study at the effect of batching in typical Indian traffic conditions. In Chapter [2] we discuss in detail the various existing models available for road networks. In Chapter [3] we discuss about mod-
el ing different aspects of traffic at a signalized intersection. In Chapter [4] different analytical models are considered which provide good approximations for the model that we are studying. In Section [5.3] we compare Webster’s formula and its extensions with the simulations of models that we considered in the Chapter [3] and find out the analytical model that gives the best approximation for each of the service models that we have considered. In Chapter [6] an optimisation problem where the signal timings are optimised to minimize the mean delay at the intersection, is studied, for M/D/1 and M/G/1 interrupted queue models. In Chapter [8] we study the effects of batching due to 2-wheeler traffic on typical Indian traffic conditions. In Chapter [7] we study a 2-stage tandem queue where the first intersection is assumed to be M/D/1 interrupted queue and the second intersection has a deterministic service process, to estimate the mean delay across the tandem queue.
Chapter 2

Literature Survey

Though the problem discussed might be the same, the traffic engineers and the queueing (networking) researchers use different terminology to describe similar parameters in the problem. Here we look to bring a consensus between the terminologies used by the traffic engineers and the queueing (networking) researchers and explain what they means. Individual parameters of the pairs given below are viewed as the same under our problem setting.

1. **Flow rate - Arrival rate**: According to traffic engineers, flow rate gives the number of vehicles passing through a given point on the road in unit time. This could in turn be viewed as the rate at which vehicles arrive into an intersection. According to queueing researchers, arrival rate gives the rate at which packets arrive into a queue.

2. **Capacity - Service rate**: To traffic engineers, capacity gives the maximum number of vehicles per unit time, which can be accommodated under any given conditions. Service rate, according to queueing researchers, means the number of packets serviced per unit time (or the rate at which the queues are drained) by the whole system.

 Capacity is defined as the maximum number of vehicles per unit time, which can be accommodated under any given conditions. But there is a question of how best to define a vehicle when the traffic is heterogenous, i.e., contains different types of vehicle. This makes it necessary to have a standard unit for vehicles. Thus to deal with heterogenous
traffic, each vehicle type is converted into its PCU (Passenger Car Units) values. The PCU is the universally adopted unit of measurement of traffic volume, defined by taking the passenger car as the standard vehicle. The passenger car has a PCU value equal to 1 and PCU values of other vehicles are calculated considering their service times in relation to that of a passenger car.

3. **Degree of Saturation - Server Utilization**: In traffic engineering terms, degree of saturation is defined as the ratio of flow to capacity. In queueing theory terms, server utilization is defined as the ratio of mean arrival rate to mean service rate.

The problem of estimating mean delay at fixed-cycle (green time and red time durations are deterministic) traffic lights has been well studied in traffic engineering. The earliest models considered had vehicles arriving at regularly spaced intervals and service of vehicles happening at regularly spaced intervals (deterministic) [2]. Webster [21] assumes Poisson arrival of vehicles and deterministic service times to model the fixed-cycle traffic light problem. Webster’s formula is the most famous result for this specific problem.

We see that Poisson point process is one of the most widely used traffic flow models [18][13]. The main attraction for this model is that it is mathematically tractable. It is a reasonable model when the traffic density is light. Poisson point process assumes that successive gaps between vehicles are independent. The use of Poisson point process for arrivals is justified, because in the roads leading up to the intersections the vehicles will never be closely packed and will leave sufficient distance between each other. Thus it is reasonable to think of vehicles as points, in roads leading up to the intersection.

Webster arrived at his formula empirically using simulations. Many attempts have been made to come up with a complete analytic solution. McNeil [10] shows that the problem of obtaining an exact formula for mean delay can be reduced to that of obtaining an exact formula for the mean overflow queue length (mean stationary queue length at the end of green time). Darroch [4] suggests a method to compute the mean overflow queue length exactly, but provided a computationally complex approach. McNeil [10], Miller [11] and Newell [12] give approximate
formulas for computing the mean overflow queue lengths. Another thing to notice is, almost all of these works except Newell assumes the service times to be deterministic, where as Newell assumes a general service time distribution. Ohno [13] compares the works of Webster, McNeill, Miller and Newell, and concludes that the delays estimated by them are extremely similar for Poisson arrivals.

Since in this work our main focus is to extend the problem of estimating mean delay at fixed-cyle traffic lights to general service distribution and semi-Markov service distributions, we will focus on Webster’s model and will look to extend it to these service models. Therefore, we will assume Poisson arrival process as well in our work.

The semi-Markov service process tells that the service time of a customer is dependent on the current customer and the customer it follows. How this transforms into the traffic engineering domain is explained by the car following models. Car following is the task of one vehicle following an another [15]. The task of driving a vehicle behind another is further subdivided into 3 tasks.

1. **Perception**: The information gathered through the visual channel. eg: inter-vehicle spacing, relative velocity.

2. **Decision Making**: The driver has to interpret the informations gathered through visual senses and then make a decision as to accelerate or brake or something else.

3. **Control**: Factors related to the skill of the driver.

While following another vehicle, the current vehicle would want to move at particular speed ensuring a safe tail-to-tail distance with the preceding vehicle. Rothery [15] gives a model to relate the speed of the vehicle \(V \) and tail-to-tail distance between vehicles \(D \),

\[
D = \alpha + \beta V + \gamma V^2 \tag{2.1}
\]

where the physical interpretation of the parameters can be given as,
\(\alpha = \) the effective vehicle length, \(L \)
\(\beta = \) the reaction time
\(\gamma = \) the reciprocal of twice the maximum average deceleration of a following vehicle

Maitra-etal \[8\] discusses the relation between speed of vehicles and the flow rate. They quantify congestion on road for any given operating condition, using the speed-flow graph. They shows that, as velocity increases flow rate of vehicles also increases and hits a maximum value and then decreases with further increase in speed. We can also explain this as the variation of head-to-head distance between vehicles w.r.t to speed by the well known relation between flow rate \(\lambda \), speed \(v \) and tail-to-tail distance between vehicles \(D(v) \) given by the expression \[2.1\].

\[
\lambda = \frac{v}{D(v)}
\]

May\[9\] gives a detailed account of various models of Car following theories. Pioneering works in this field were done by Pipes, Forbes, and the General Motors researchers.

1. **Pipes’ Theory**: Pipes characterized the motion of vehicles according to the California Motor Vehicle Code, namely: “A good rule for following another vehicle at a safe distance is to allow yourself at least the length of a car between your vehicle and the vehicle ahead for every ten miles per hour of speed at which you are travelling”. According to Pipes’ car following theory, the minimum safe headway increases linearly with speed.

2. **Forbes’ Theory**: Forbes characterized the car following behavior by considering the reaction time needed for the following vehicle to perceive the need to decelerate and then apply the brakes. This means that the gap between rear of the lead vehicle and the front of the following vehicle must be greater than or at least equal to the reaction time. Thus Forbes define the minimum time headway as equal to the sum of reaction time (minimum time gap) and the time required for the lead vehicle to traverse a distance equal to its length. Here also the minimum safe distance headway increases linearly with speed.
3. **General Motors’ Theories**: The car following theories developed by the researchers associated with General Motors group were lot more extensive. The accompanying comprehensive field experiments and the discovery of the mathematical bridge between microscopic and macroscopic theories of traffic flow make them particularly important. All five generations of car-following models developed by the research team had the same form, "response = func(sensitivity, stimuli)". Response was represented by the action taken (acceleration/deceleration) by the following vehicle and stimuli is represented by the relative velocity of the lead and following vehicles. The five models differ only in their representation of sensitivity.

Panwai and Hussein \[14\] describes car following models as being dependent on a number of factors. These factors can be divided into two categories. The first, comprises of factors such as age, gender, skill level, vehicle size and performance characteristics, risk taking behavior etc. The second consists of factors relating to environment and individual. The environment related factors include, the day of the week, the time of the day, weather, road conditions etc. The individual factors include, the distractions, impairment due to alcohol, stress and fatigue, trip purpose, duration of the drive etc. They also explain different car following models such as Gazis-Herman-Rothery model, fuzzy logic based models etc which all relates the safe distance headway, reaction time, and the stimuli (relative velocity between lead and following vehicles, relative accelerations etc).

Panwai and Hussein \[14\] also explain Desired-Spacing model which explains car following in terms of the desired spacing between the vehicles without dwelling into the behavioral aspects of car following. This would be the approach that we would follow in this work.

Having talked about the models arrival and service processes for vehicles at a signalised intersection, we would now look at models that we could use for analysing the intersection. At a traffic intersection service of vehicle happens in a switched manner. During the green periods vehicles are serviced and during the red periods the server remains idle. There are a number of queueing models like vacation models, priority queues, queues with interruption etc., that
behave in a similar way.

In the vacation model, once the busy period is over, the server takes a vacation or a break for a random amount of time. Once the vacation is over, it will check the queue again and if it is empty, it will either wait for a customer to come or will take another vacation depending on whether it is a single vacation or multiple vacation model. But this model is not used, as this does not realistically represent the traffic at intersection, as in an intersection the server could take a break even in the middle of service.

In queues with interruption, the queue remains ON for a random length of time, and then turns OFF for another random length of time. This cycle continues. The queue is serviced only during the ON times. This model is quite similar to how the traffic works at intersections. The traffic light for a lane stays green for sometime, and then turns red. This cycle continues. The vehicles are allowed to cross the intersection only during the green times. Thus the queues with interruption seems to be a quite reasonable model for studying traffic at an intersection.

Federgruen and Green [5] analyses queues with interruption, with Poisson arrival process and general i.i.d. service time distributions. The case that Federgruen and Green analyses, where the arrival rate is same during both ON times and OFF times, and the service time distributions are same for vehicles arriving during both ON and OFF times, is a special case of the general model that Sengupta analyses.

Sengupta [17] analyses queues with interruption that are quite general. The arrival rate of vehicles could be different during ON times and OFF times. Similarly the service time distribution for vehicles arriving during ON times and OFF times can also be different. Sengupta analyses the model using the concept of residual service times while Federgruen and Green analyses it using the concept of completion times. We will be following Sengupta’s analysis in this work. We will take a detailed look at this model in Section [4.2]

In this work we aim to model the intersection with fixed-cycle traffic lights, as a queue with service interruption and analyse this model to estimate the mean delay at the intersection. We further aim to extend the Webster’s formula for mean delay estimation, to general and semi-
Markov service models. Webster’s formula and its extension to M/G/1 model is used to optimise the signal timings. We proceed to study the effects of batching which is typical of 2-wheeler traffic and will attempt to develop an analytical model for estimating the mean delay for traffic containing 2-wheelers. We then study a 2-stage Tandem queue where the first intersection is assumed to be a M/D/1 interrupted queue and the second intersection is assumed to have a deterministic service process, with the aim of obtaining an approximation for mean delay across the two intersections.
Chapter 3

Modeling the Queues at a Traffic Intersection

Traffic lights are used to control traffic at intersections. Arriving vehicles queue up during the red periods of the traffic light that controls their desired exit point, and are allowed to proceed to their exit point when the light turns green. Typically, the lights are scheduled cyclically, i.e., there is a repetitive pattern comprising a *cycle time* during which there is a fixed pattern of red and green periods for each light. Given this pattern, the congestion process at the intersection is governed by arrival processes of vehicles from each road leading into the intersection, and the driver behaviour when they queue up (e.g., motorcycle drivers might try to jockey their way into the spaces between four-wheeled vehicles), and the driver behaviour when they exit during a green time (e.g., a small car following a bus might allow a large tail-to-head distance before starting to move, as opposed to if the small car is behind another small car). It is this latter feature of traffic lights that makes the system essentially different from a packet switch in a packet network. Packets have no "behaviour" of their own, and the centralised scheduling and routing algorithm, running in the packet switch processor, has complete control over the way the various packet buffers are served.
3.1 Queueing and Service at a Traffic Intersection

The figure [3.1] represents a typical signalised intersection, with the traffic signal controlling the traffic flow through the 4 connected roads. Assuming that no free left turns are allowed at the intersection, we can analyse each road individually and independent of the other roads.
Consider a single lane road leading to an intersection. Assume that the stretch of road that leads to the intersection is long enough so that the vehicles are cruising before it enters the intersection. When the lights are red the vehicles arriving are queued one behind the other. When the lights turn green, the waiting vehicles are serviced (exit) in a *first come first served* manner. Clearly, this behaviour is typical of a queue with interrupted service. Hence we model the single lane traffic controlled by traffic lights as a queue with interrupted service. We will also make the assumption that one *cycle time* for the traffic lights comprises of one *green time* and one *red time*.

Figure 3.2: A single lane road controlled by a traffic signal
In this section we will explain the arrival process model and the service process model that we will be using in this work.

3.1.1 Arrival Process Model

We have already seen in the literature survey [2] that the Poisson model is a reasonable model to use for modelling the arrival process [18][11][13]. The model has the advantage that it is mathematically tractable. Most of the researchers, like Webster [21], use the Poisson model for the arrival process of vehicles into a traffic intersection. The assumption that successive gaps between vehicles are exponentially distributed and independent is reasonable on the stretch of road that leads to the traffic intersection, because the vehicles are sufficiently apart from each other and it is reasonable to think of them as point entities. So we will also assume the arrival process of vehicles into the intersection to be Poisson.
3.1.2 Service Model

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>arrival rate (vehicles/second)</td>
</tr>
<tr>
<td>c</td>
<td>cycle duration (seconds): one green time + one red time (This is an assumption; in some cases, during a cycle the same lane may get a green twice.)</td>
</tr>
<tr>
<td>g</td>
<td>green time duration (seconds)</td>
</tr>
<tr>
<td>r</td>
<td>red time duration (seconds)</td>
</tr>
<tr>
<td>d_{ij}</td>
<td>minimum distance (meters) from the tail of vehicle i, to the tail of vehicle j. i.e., the minimum lagging headway required for vehicle j when it is preceded by vehicle type i, before vehicle j starts moving. We call this minimum lagging headway as the lagging headway for a vehicle in our service model.</td>
</tr>
<tr>
<td>v_s</td>
<td>speed with which vehicles leave the intersection; in practice, the vehicles would have to accelerate to reach this speed, but in our analysis we neglect the acceleration time, i.e., we assume that the vehicle accelerates instantly to the exit velocity v_s.</td>
</tr>
<tr>
<td>t_{ij}</td>
<td>$\frac{d_{ij}}{v_s}$</td>
</tr>
<tr>
<td>l_i</td>
<td>length of vehicle type i</td>
</tr>
<tr>
<td>g_{ij}</td>
<td>distance left by vehicle type j in front of it, when the vehicle in front is of type i, while waiting in the queue</td>
</tr>
</tbody>
</table>
Figure 3.4: Lagging Headway for a vehicle type 2

Now that we have fixed on a model for the arrival process, we need to identify a model that fits the service process. Due to the car-following behaviour, when vehicles exit a signalized intersection the headway they have depends both on their own type and the type of vehicle that it follows (the preceding vehicle). This means that the lagging headway of a particular vehicle depends both on itself and the preceding vehicle.

In order to develop a queueing analysis, we need to specify a model for the service times required by the successive vehicles.
A vehicle is said to have entered service once the preceding vehicle’s tail has crossed the stop line at the intersection. The service time for a vehicle is the time taken by it to leave the intersection (i.e., its tail has crossed the stop line) after it has entered service. For a given constant exit speed, the service time for a vehicle depends on the lagging headway of the vehicle.
We will derive the service time of a vehicle from this model that we have considered.

Consider that light turned green at time $t = 0$. A vehicle starts moving when there is enough head room between itself and the preceding vehicle (i.e., minimum required lagging headway—length of the vehicle). For a vehicle to exit the intersection, its tail has to cross the stop line. Service time of a vehicle is difference of its exit time and exit time of the previous vehicle that entered service.

Let U_k represent the exit time of the k^{th} vehicle from the intersection. Then for $k \geq 2$,

$$U_k = \sum_{i=1}^{k-1} \frac{d_{i+1} - g_{i+1} - l_{i+1}}{v_s} + \sum_{i=1}^{k} \frac{l_i}{v_s} + \sum_{i=1}^{k-1} \frac{g_{i+1} - l_{i+1}}{v_s}$$

where the first term represents the time at which the k^{th} vehicle starts to move, and the second and third terms represent the time taken by the k^{th} vehicle to exit the intersection once it has started moving.

The service time for the k^{th} vehicle is the time taken to cross the stop line, after the preceding vehicle has crossed the stop line. Hence the service time for the k^{th} vehicle, S_k, can be expressed as,

$$S_k = U_k - U_{k-1} = \frac{d_{k-1,k} - g_{k-1,k} - l_k}{v_s} + \frac{l_k}{v_s} + \frac{g_{k-1,k}}{v_s} = \frac{d_{k-1,k}}{v_s}$$

Thus the service time for a vehicle is the time taken to traverse its lagging headway. This is explained in a tabular form below.
Table 3.1: Tabulated form of times at which a particular vehicle starts moving, the time at which it exits the intersection and the service time for the vehicle.

Notation

- f_{ij}: probability that vehicle type i is followed by vehicle type j
- p_{ij}: probability that vehicle type i is preceded by vehicle type j. p_{ij} value can be obtained from the f_{ij} value from the relation, $\pi_i p_{ij} = \pi_j f_{ji}$
- \mathcal{V}: set of all vehicle types

We will now look at a model where the distance between vehicles are dependent on both the preceding and following vehicles.

There are M vehicle-driver combinations (types) indexed by the set $\mathcal{V} = \{1, 2, \cdots, M\}$. Let $X_k, \ k \geq 0, X_k \in \mathcal{V}$, denote the type of the k^{th} vehicle crossing the intersection, and let $D_k, k \geq 0$, denote the lagging headway for the k^{th} vehicle while crossing the stop line at the intersection. We consider the following model for the random process $(X_k, D_k), k \geq 0$.

$$P(X_{k+1} = j, D_{k+1} = d | (X_0, D_0) = (x_0, d_0), \cdots, (X_k, D_k) = (i, d_k)) = f_{ij} G_{ij}(d)$$
where the transition probability \((\text{following probability}) f_{ij} \) is defined as

\[
f_{ij} = P[X_{k+1} = j | X_k = i]
\]

It follows that \(X_k, k \geq 0 \), is a time-homogeneous Markov chain on \(\mathcal{V} \), with transition probabilities \(f_{ij}, i, j \in \mathcal{V} \), and

\[
P(D_{k+1} = d | X_k = i, X_{k+1} = j) = G_{i,j}(d)
\]

The transition probabilities of the Markov chain \{\(X_k \)\} depend on how vehicles are interleaved when different traffic streams merge before arriving into the intersection and the distributions \(G_{i,j}(d) \) depend on car following behaviour when the driver-vehicle combination \(j \) is behind the driver-vehicle combination \(i \), and the traffic is exiting at speed \(v \).

We assume that the transition probability matrix \(F := [f_{i,j}] \) \((\text{following probabilities}) \) is irreducible, from which it follows that the Markov chain \{\(X_k \)\} is positive recurrent. Let \(\pi := (\pi_i, i \in \mathcal{V}) \) denote the invariant probability vector.

The conditional expected distance between consecutive vehicles crossing exit line is denoted by

\[
d_{i,j} := E(D_{k+1} | X_k = i, X_{k+1} = j)
\]

which is assumed to exist and to be finite. If the vehicles are assumed to have a constant exit speed \(v_s \), the conditional expected time between vehicles crossing the stop line is given by,

\[
t_{ij} = \frac{d_{ij}}{v_s}
\]

We use a similar model to define the service process in this work except for the fact that we will assume that the lagging headway for a vehicle is deterministic if its type and the preceding vehicle’s type are known. i.e.,
\[P \left(D_{k+1} = d \mid X_k = i, X_{k+1} = j \right) = 1_{\{d=d_{ij}\}} \]

Service of the first arrival in a busy period:

In practice, when a vehicle arrives into an empty queue, i.e., there is no preceding vehicle, the service time for the vehicle is the time taken to traverse the length of the vehicle. But we could also have a model where the service time of vehicle arriving into an empty queue would still be dependent on the preceding vehicle (the last vehicle in the previous busy). While this would not match the way the real system works, it might serve as a useful approximation. Thus depending on how we model the service time of the first vehicle in a busy period we could have two models, a *state dependent* model and a *state independent* model.

In state independent model, no matter which state the arriving vehicle finds the system, the lagging headway would be calculated depending on the last vehicle to enter service. But in the state dependent model when a vehicle arrives into a queue, it can encounter one of two scenarios, an empty queue or a non-empty queue. The service time for the vehicle differs in each of these cases. When the queue is non-empty the service time for the vehicle would be the time taken to traverse the lagging headway from the vehicle in front of it, and when the queue is empty the service time for the vehicle would be the time taken to traverse a distance equal to its own length.

Treatment of an interrupted ongoing service:

When the light turns red at a signalized intersection, it is possible that a vehicle is crossing the STOP line. What happens to this vehicle? There are two possibilities: (i) non-preemptive service: the vehicle continues to exit and clears out before any other direction of flow is given the green signal (such switching delays are implemented in practice, for precisely such situations), or (ii) preemptive resume service: the vehicle stops where it is (assuming that it does not block the intersection) and continues its exit during the next green time for this flow. In queueing
literature there is also the notion of preemptive repeat service, which in this setting would mean that the vehicle backs up to behind the STOP line, and attempts another exit in the next green time; this is clearly impractical in the traffic light setting.

We would later see that Webster’s approximation [21] is modeling a preemptive resume service model. Hence in this work we will also assume the service to be preemptive resume.

3.2 Relation to the PCU terminology:

The PCU is the universally adopted unit of measurement of traffic volume, defined by taking the passenger car as the standard vehicle. The passenger car has a PCU value equal to 1 and larger vehicles have PCU values greater than one. There are several different methods used to define PCU Values. The one we use is a variant of the

Headway Ratio Method. The headway distance means the distance between the front tip of preceding vehicle to the front tip of the following vehicle.

The **Headway Ratio Method** is defined as follows

Given ,

\[H_c = \text{Average Headway for passenger car (averaged over all possible preceding vehicle types)} \]

\[H_i = \text{Average Headway for vehicle type } i \text{ (averaged over all possible preceding vehicle types)} \]

Then, PCU value of Vehicle Type \(i \) is given by

\[PCU_i = \frac{H_i}{H_c} \]

Though in **Headway Ratio Method**, headway means the distance between the front tip of preceding vehicle to the front tip of the following vehicle, a headway defined by the distance between rear end of preceding vehicle to the rear end of following vehicle (lagging headway), i.e., tail-to-tail distances, is considered a more appropriate measurement for estimating PCU values [16].
CHAPTER 3. MODELING THE QUEUES AT A TRAFFIC INTERSECTION

So, we use the lagging headway for calculating the PCU values. Thus,

\[H_i = \text{mean lagging headway for vehicle type } i \]

\[H_c = \text{mean lagging headway for passenger car} \]

For \(X_k, k \geq 0, X_k \in \mathcal{V} \), denoting the indices of the successive vehicles crossing HOL position at an intersection, let us define the precedence probability as follows,

\[p_{ij} = P[X_k = j | X_{k+1} = i] \quad \forall i \in \mathcal{V}, j \in \mathcal{V} \]

We can obtain the \(p_{ij} \) values from the \(f_{ij} \) values, given the stationary probabilities \(\pi_i, i \in \mathcal{V} \) as follows

\[p_{ij} = \frac{\pi_j f_{ji}}{\pi_i} \]

If we were to use preceding probabilities \(p_{i,j}, i, j \in \mathcal{V} \), with vehicle type \(c \) denoting passenger car & tail-to-tail distances \(d_{ij} \), then we can define PCU value of Vehicle Type \(i \) as

\[\text{PCU}_i = \gamma_i = \frac{H_i}{H_c} = \frac{\sum_{j \in \mathcal{V}} p_{ij} d_{ji}}{\sum_{j \in \mathcal{V}} p_{cj} d_{jc}} \tag{3.1} \]

where expectation over all possible tail-to-tail distances for vehicle type \(i \) is taken to compute the mean lagging headway \(H_i \) of vehicle type \(i \).

If the PCU values for each vehicle types, the stationary probability distribution and the mean service time for a passenger car are given, we can can calculate the mean service time as given below.

For PCU value [3.1] of vehicle type \(i, \gamma_i \), defined by
\[\gamma_i = \frac{\sum_{j \in V} p_{ij} d_{ji}}{\sum_{j \in V} p_{cj} d_{jc}} \]

and mean mean service time for passenger car, \(\tau_c \), given by

\[\tau_c = \frac{\sum_{j \in V} p_{cj} d_{jc}}{v_s} \]

the mean service time is given by

\[
\tau = \frac{\sum_{i \in V} \sum_{j \in V} p_{ij} d_{ji}}{v_s} = \frac{\sum_{i \in V} \gamma_i \sum_{j \in V} p_{cj} d_{jc}}{v_s} = \tau_c \sum_{i \in V} \gamma_i
\]

3.3 Traffic Intersection Simulation

The scenario of traffic at signalised intersections was simulated in Matlab. The simulations of 3 different models were done. The M/SM/1 model, which is the model that we have discussed till now, with Poisson arrivals and service process where the successive service times are dependent, is the primary model studied. We also consider two simplified models derived from the M/SM/1 model. Those would be the M/G/1 model and the M/D/1 model. We assume that we know the following probability distribution \([3.1.2]\) for each type of vehicles and the lagging headway for every pair of vehicle types is also known. It is also assumed that vehicles have zero acceleration time i.e., the vehicles instantly accelerates to the exit velocity.

1. **M/SM/1 model**: The inter arrival durations are exponentially distributed. The initial vehicle is sampled from the stationary probability distribution obtained from the following
probabilities. Every subsequent vehicle is sampled from the following probability distribution of the previous vehicle. The service time for the current vehicle is computed after looking at the types of current vehicle and the previous vehicle. eg: if current vehicle type is i and the previous vehicle was of type j, then the service time for vehicle i is taken to be $\frac{d_{ji}}{v_s}$ (where v_s is the exit velocity for vehicles). This is the primary model available.

2. **M/G/1 model**: This is one of the simplified version of the M/SM/1 model that we will be looking at. The inter arrival durations are exponentially distributed. All the vehicles are sampled from the stationary probability distribution obtained from the following probabilities. To calculate the service times we need the precedence probability distribution for each vehicle. We derive them from the following probability distributions using the given formula.

$$\pi_i p_{ij} = \pi_j f_{ji}$$

Now from the precedence probability distribution we will sample a vehicle type. We will compute the service time for the current vehicle, depending on the current vehicle type and the preceding vehicle type sampled from the precedence probability distribution.

For the state dependent model, it is initially sampled according to $(\rho, 1 - \rho)$ to identify whether the queue is busy or not. Then the lagging headway is either calculated depending on the preceding vehicle sampled from precedence probability distribution, or taken to be the length of the vehicle depending on whether the queue was busy or not.

3. **M/D/1 model**: This is also a simplified version of the M/SM/1 model that we had discussed. The inter arrival durations are exponentially distributed. There will be just one vehicle type and the lagging headway for the vehicle type would be the mean of all lag-
ging headways, computed as given below.

\[
\mathbb{E}[T] = \sum_{i \in V} \pi_i \sum_{j \in V} p_{ij} d_{ji}
\]
\[
= \sum_{i \in V} \pi_i \sum_{j \in V} \frac{\pi_j f_{ji}}{\pi_i} d_{ji}
\]
\[
= \sum_{j \in V} \pi_j \sum_{i \in V} f_{ji} d_{ji}
\]

Using this expected lagging headway, the service time of the vehicle can be calculated as

\[
\tau = \frac{\mathbb{E}[T]}{v_n}
\]

This value would be taken as the deterministic service time of all the vehicles in this model. We would later see that Webster [21] approximation assumed the preemptive M/D/1 model.

3.4 Example Traffic Models

Two 2—vehicle models and one 3—vehicle model are considered for the simulations. The details are given in tabular form.
Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Traffic Model-1</th>
<th>Traffic Model-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_A</td>
<td>4m</td>
<td>4m</td>
</tr>
<tr>
<td>l_B</td>
<td>14m</td>
<td>30m</td>
</tr>
<tr>
<td>$(d_{AA}, d_{AB}, d_{BA}, d_{BB})$</td>
<td>${5m, 7m, 16m, 18m}$</td>
<td>${5m, 7m, 33m, 36m}$</td>
</tr>
<tr>
<td>$(f_{AA}, f_{AB}, f_{AB}, f_{BB})$</td>
<td>${0.5, 0.5, 0.5, 0.5}$</td>
<td>${0.5, 0.5, 0.5, 0.5}$</td>
</tr>
<tr>
<td>${\pi_A, \pi_B}$</td>
<td>${0.5, 0.5}$</td>
<td>${0.5, 0.5}$</td>
</tr>
</tbody>
</table>

Cycle length, c	60s	60s
Mean service time, τ (State Independent)	2.555s	4.5s
Second moment, $b_1^{(2)}$	8.07	30.358
Variance of service time distribution	1.546	10.1
Exit Velocity, v_s	4.5 m/s	4.5 m/s

Table 3.2: Parameters used for the two traffic models considered for simulations and later, for analysis

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Traffic Model - 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_A, l_B, l_C)</td>
<td>${4m, 15m, 30m}$</td>
</tr>
<tr>
<td>$(d_{AA}, d_{BA}, d_{CA}, d_{AB}, d_{BB}, d_{CB}, d_{AC}, d_{BC}, d_{CC})$</td>
<td>${5m, 6m, 8m, 18m, 20m, 24m, 34m, 36m, 42m}$</td>
</tr>
<tr>
<td>$(f_{AA}, f_{AB}, f_{AC}, f_{BA}, f_{BB}, f_{BC}, f_{CA}, f_{CB}, f_{CC})$</td>
<td>${0.6, 0.3, 0.1, 0.4, 0.4, 0.2, 0.3, 0.3, 0.4}$</td>
</tr>
<tr>
<td>${\pi_A, \pi_B, \pi_C}$</td>
<td>${0.4762, 0.3333, 0.1905}$</td>
</tr>
<tr>
<td>Preceding probability Dist. for $A(p_{Ai}, i \in V)$</td>
<td>${5m, 6m, 8m}$ w.p. ${0.6, 0.28, 0.12}$</td>
</tr>
<tr>
<td>Preceding probability Dist. for $B(p_{Bi}, i \in V)$</td>
<td>${18m, 20m, 24m}$ w.p. ${0.4286, 0.4, 0.1714}$</td>
</tr>
<tr>
<td>Preceding probability Dist. for $C(p_{Ci}, i \in V)$</td>
<td>${34m, 36m, 42m}$ w.p. ${0.25, 0.35, 0.4}$</td>
</tr>
<tr>
<td>Mean service time, τ (State Independent)</td>
<td>3.67s</td>
</tr>
<tr>
<td>Second moment, $b_1^{(2)}$</td>
<td>20.937</td>
</tr>
</tbody>
</table>

Table 3.3: Parameters used for 3 - vehicle case study
Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Traffic Model - 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{V}</td>
<td>{A, B, C, D}</td>
</tr>
<tr>
<td>${l_A, l_B, l_C, l_D}$</td>
<td>{3m, 5m, 9m, 15m}</td>
</tr>
<tr>
<td>${d_{AA}, d_{BA}, d_{CA}, d_{DA}, d_{AB}, d_{BB}, d_{CB}, d_{DB}, d_{AC}, d_{BC}, d_{CC}, d_{DC}, d_{AD}, d_{BD}, d_{CD}, d_{DD}}$</td>
<td>{4m, 4.5m, 5m, 6m, 6m, 6.5m, 7m, 8m, 10m, 11m, 12m, 14m, 17m, 18m, 20m, 22m}</td>
</tr>
<tr>
<td>${f_{AA}, f_{AB}, f_{AC}, f_{AD}, f_{BA}, f_{BB}, f_{BC}, f_{BD}, f_{CA}, f_{CB}, f_{CC}, f_{CD}, f_{DA}, f_{DB}, f_{DC}, f_{DD}}$</td>
<td>{0.5, 0.3, 0.15, 0.05, 0.4, 0.3, 0.2, 0.1, 0.3, 0.2, 0.4, 0.1, 0.1, 0.1, 0.2, 0.6}</td>
</tr>
<tr>
<td>${\pi_A, \pi_B, \pi_C, \pi_D}$</td>
<td>{0.3647, 0.2446, 0.2272, 0.1635}</td>
</tr>
</tbody>
</table>

Preceding probability Dist. for $A(P_{Ai}, i \in \mathcal{V})$:
\{4m, 4.5m, 5m, 6m\} w.p. \{0.5, 0.2683, 0.1869, 0.0448\}

Preceding probability Dist. for $B(P_{Bi}, i \in \mathcal{V})$:
\{6m, 6.5m, 7m, 8m\} w.p. \{0.4473, 0.3, 0.1858, 0.0669\}

Preceding probability Dist. for $C(P_{Ci}, i \in \mathcal{V})$:
\{10m, 11m, 12m, 14m\} w.p. \{0.2408, 0.2153, 0.4, 1439\}

Preceding probability Dist. for $D(P_{Di}, i \in \mathcal{V})$:
\{17m, 18m, 20m, 22m\} w.p. \{0.1115, 0.1496, 0.1389, 0.6\}

Mean service time, τ (State Independent): 2.0417s

Second moment, $b_1^{(2)}$: 5.8351

Table 3.4: Parameters used for traffic flow containing 4 vehicle types

3.5 Preemptive service vs. nonpreemptive service

We compare the simulations for preemptive resume and non-preemptive models for Traffic model - 3 [3.3], in the plots given below.
In the plots we see that the simulation of non-preemptive model does not match with simulation of preemptive resume model, which is along expected lines. The non-preemptive simulations
are expected to differ from the preemptive simulation by quite a margin at higher loads because, at higher loads it is highly likely to have a vehicle start its service just before the red time. But since the model is non-preemptive, the work is assumed to have completed during the red time. This will mean that we would lose out on a large amount of work in non-preemptive model which we would otherwise consider in the preemptive model. This would decrease the mean delays we see at higher loads in the non-preemptive case. Hence there exist a significant difference in the mean delay seen in the two models. We will see in Chapter 4 Section [4.3.1] that the well known Webster delay formula matches our simulation with preemptive resume service. Based on this, we consider preemptive resume to be service model in the rest of this work.

3.6 Service of the First Arrival in a Busy Period

We will now compare the preemptive interruption traffic Models (M/D/1, M/G/1, M/SM/1) in state dependent and state independent environments. The plots for the Traffic Model-2 [3.2] and Traffic Model-3 [3.3] are shown below.

X-Axis degree of saturation = $\frac{\lambda \tau}{g/c}$, where τ is the mean service time state independent model.

Y-Axis Mean Delay
Figure 3.7: Normalised Mean Delay V/s Degree of Saturation (Traffic Model-2) : Comparison between preemptive State Dependent simulation and preemptive State Independent simulation models.
Figure 3.8: Normalised Mean Delay V/s Degree of Saturation (Traffic Model-3) : Comparison between pre-emptive State Dependent simulation models and pre-emptive State Independent simulation models.

The plots show that the mean delay suffered by vehicles for a given arrival rate in state-dependent models and the state independent models are almost the same. Hence, we consider
state independent model in the rest of this work.

3.7 Stability Criterion

Notation

\[\tau \] mean service requirement for the the set of vehicles \(\mathcal{V} \)

\[\{X(t), t \geq 0\} \] the random process representing the work seen in the system at time \(t \).

\[\{Y(t), t \geq 0\} \] the process constructed from \(\{X(t), t \geq 0\} \) by deleting the red times.

\[\{Z(t), t \geq 0\} \] the process constructed from \(\{X(t), t \geq 0\} \) by deleting the green times.

A state independent service time distribution implies that the service time distribution of all the vehicles in the queue are identical. Under this assumption, Sengupta [17] gives the following arguments to provide the stability criterion for the queue with interrupted service.

![Diagram showing the processes X(t), Y(t), and Z(t)]

From the above figure [3.9], it is obvious that the \(\{Y(t), t \geq 0\} \) process is identical to, work in
the system for a queue with a mix of M/G/1 and G/G input streams. The process \(\{X(t), t \geq 0\} \) is stable if and only if, the process \(\{Y(t), t \geq 0\} \) is stable [17]. Thus, conditioned on the green periods, which are the only times during which work is done, we have an M/G/1 queue and a GI/G/1 queue. The rate of arrival of work in the M/G/1 queue is \(\lambda \tau \), and that in the GI/G/1 queue is \(\frac{1}{g} \lambda \tau r \). Hence the stability condition is given by,

\[
0 \leq \lambda \tau + \frac{\lambda \tau r}{g} < 1
\]

\[
0 \leq \frac{\lambda \tau}{g/c} < 1
\]

\[
0 \leq x < 1
\]
Chapter 4

Analysis of Queues at Traffic Intersections

In this chapter we study analytical models for estimating the mean delay experienced by vehicles for the different models that we have discussed.

A model that closely resembles traffic at intersections is queues with interruption [17]. Here the server randomly takes a break, even in between service. Once it takes a break it stays in OFF-state for a random amount of time and then returns to service. Again, it will stay on service for a random time period and then takes a break. This continues. We see that this model with ON and OFF durations sampled from a deterministic distribution represent quite realistically the traffic at intersections. Sengupta [17] analyses the work in the queue, waiting time distribution etc for a queue with interruptions in detail. Later in this chapter, we use those results to calculate the mean delay in such queues, and then compare the results against the mean delay suffered by vehicles calculated using the Webster’s formula [21], and also against the mean delay suffered by vehicles calculated using simulations of traffic intersections, and see if the queue with interruptions can give any improvement over the Webster’s results.

We will find that queues with interruption model discussed by Sengupta [17] with appropriate service distribution approximates the corresponding simulation model quite well, and that the Webster’s model [21] models the M/D/1 simulation quite well. We will also suggest modified Webster’s models which will accurately model the M/G/1 and M/SM/1 models quite well.
Before we look at these models, we will look at a general analysis of mean delay suffered by arriving vehicles at an intersection.

4.1 Mean Delay Analysis - Preliminaries

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_k</td>
<td>waiting time (time until start of service) for k^{th} vehicle</td>
</tr>
<tr>
<td>V_k</td>
<td>work in the system seen by k^{th} vehicle, on arrival into the intersection</td>
</tr>
<tr>
<td>R_k</td>
<td>total red-time encountered by k^{th} vehicle</td>
</tr>
<tr>
<td>$\mathbb{E}W$</td>
<td>mean waiting time for vehicles at the intersection</td>
</tr>
<tr>
<td>$\mathbb{E}V$</td>
<td>mean work seen by arrivals into the intersection</td>
</tr>
<tr>
<td>$\mathbb{E}R$</td>
<td>mean red-time seen by arrivals</td>
</tr>
<tr>
<td>$V_k^{(g)}$</td>
<td>work seen by the k^{th} vehicle to arrive in the green time</td>
</tr>
<tr>
<td>$V_k^{(r)}$</td>
<td>work seen by the k^{th} vehicle to arrive in the red time</td>
</tr>
<tr>
<td>$V^{(g)}$</td>
<td>mean work seen by an arrival during the green time</td>
</tr>
<tr>
<td>$V^{(r)}$</td>
<td>mean work seen by an arrival during the red time</td>
</tr>
<tr>
<td>$R_k^{(g)}$</td>
<td>red time encountered by the k^{th} vehicle to arrive in the green time</td>
</tr>
<tr>
<td>$R_k^{(r)}$</td>
<td>red time encountered by the k^{th} vehicle to arrive in the red time</td>
</tr>
<tr>
<td>\tilde{G}_k</td>
<td>residual green time seen by the k^{th} vehicle to arrive in the green time</td>
</tr>
<tr>
<td>\tilde{S}_k</td>
<td>residual red time seen by the k^{th} vehicle to arrive in the red time</td>
</tr>
<tr>
<td>$\mathbb{E}S$</td>
<td>mean residual red time seen by a vehicle arriving during the red time</td>
</tr>
</tbody>
</table>
CHAPTER 4. ANALYSIS OF QUEUES AT TRAFFIC INTERSECTIONS

The mean delay experienced by vehicle \(k \) would be the sum of the work seen by it on arrival and the total red-time it encounters. Hence,

\[
W_k = V_k + R_k
\]

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} W_k = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} V_k + \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} R_k \quad (4.1)
\]

where we assume that the limits exist with probability 1. Thus we get the following results.

\[
\mathbb{E}W = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} W_k
\]

\[
\mathbb{E}V = \lim_{t \to \infty} \int_{0}^{t} V(u)du = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} V_k
\]

where the second equality holds by PASTA (the arrival process is Poisson).

\[
\mathbb{E}R = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} R_k
\]

So, the mean waiting time for an arriving vehicle is given by,

\[
\mathbb{E}W = \mathbb{E}V + \mathbb{E}R
\]

Now we proceed to analyse \(\mathbb{E}R \).

It is interesting to note that, we can split the total red-time encountered by vehicle \(k \) into two different expressions depending on whether the vehicle arrived during the green time or during the red time. If the vehicle arrives during the green time, the number of red times it encounters will be the ratio of difference of work seen by the vehicle when it arrived into the green time
and the residual time of the current green time during which it arrived, to the duration of a green time, rounded to the nearest higher integer value (ceil function), and if the vehicle arrives during the red time, the number of red times it encounters will be, the ratio of work seen by the vehicle when it arrived into the red time to the duration of a green time, rounded to the nearest lower integer value (floor function) plus the residual time of the current red time during which it arrived. This can be expressed as follows.

If the vehicle \(k \) arrives during green time, the total red-time it encounters will be,

\[
R^{(g)}_k = \left\lfloor \frac{V^{(g)}_k - \tilde{G}_k}{g} \right\rfloor r
\]

and if the vehicle \(k \) arrives during red time, the total red-time it counters will be,

\[
R^{(r)}_k = \tilde{S}_k + \left\lfloor \frac{V^{(r)}_k - \tilde{S}_k}{g} \right\rfloor r
\]

This allows us to define the mean red-time encountered by a vehicle to be,

\[
\mathbb{E}R = \frac{g}{r+g} \mathbb{E}[R^{(g)}_k] + \frac{r}{r+g} \mathbb{E}[R^{(r)}_k]
\]

We will now approximate \(R^{(g)}_k \) and \(R^{(r)}_k \) as follows

\[
R^{(g)}_k = \frac{V^{(g)}_k}{g} r
\]

\[
R^{(r)}_k = \tilde{S}_k + \frac{V^{(r)}_k}{g} r
\]

Also, it is clear that
\[\mathbb{E}V = \frac{g}{g+r}V^{(g)} + \frac{r}{g+r}V^{(r)} \]

Since for a deterministic distribution of red time, the mean residual time is given by

\[\mathbb{E}S = \frac{r}{2} \]

Using the approximations for \(R_k^{(g)} \) and \(R_k^{(r)} \) as given above, the mean waiting time for an arriving vehicle will become

\[\mathbb{E}W = \mathbb{E}V + \frac{r}{g} \mathbb{E}V + \frac{r}{c} \mathbb{E}S \]

\[= \frac{c}{g} \mathbb{E}V + \frac{r^2}{2c} \]

We will later see in Section [5.1] that the first term in the above expression, which is the mean work expanded by a factor of \(\frac{c}{g} \), gives the mean delay suffered by an arriving vehicle assuming the server is active at the instant just after arrival. The second term is the mean time the vehicle has to wait till the server gets active for the first time after arrival.

4.2 The Analysis in Sengupta [17]

This model provides an accurate depiction of a traffic intersection from queueing point of view. This model considers a queue in a random environment defined by an alternating renewal process. The states of the alternating renewal process are 1 (ON) and 2 (OFF). The distribution of time spent in state \(i \) \((i = 1, 2)\) is \(F_i(t) \). Arrivals in state \(i \) occur according to a poisson process with mean rate \(\lambda_i \). The service time distribution is given by \(B_i(t) \). The service times of successive customers are assumed to be independent. This model splits the process \(\{X(t), t \geq 0\} \), the amount of work in the system at time \(t \), into two stationary processes \(\{Y(t), t \geq 0\}, \{Z(t), \)}
$t \geq 0$. $Y(t)$ is constructed from process $X(t)$ by deleting all times when environment is in state 2, and $Z(t)$ by deleting all times when environment is in state 1. Then [17] proceeds to compute the mean work in the process $Y(t)$ and $Z(t)$, and proportionally combining them to obtain the mean work in the system, $X(t)$. In the following expressions $\tilde{B}_1(s)$ denotes the LST of $B_1(t)$, and $b_i^{(k)}(t)$ denotes k^{th} moment of $B_i(t)$.

$G(t)$ distribution of work brought in at renewal epochs of $Y(t)$. (i.e work accumulated during the previous OFF period)

$\tilde{\rho}(s)$ LST of busy period of a special M/G/1 queue with arrival λ_1, and service time distribution $B_1(t)$ whose amount of work at time 0 is given by the distribution $G(t)$.

A special GI/GI/1 queue is defined, with inter-arrival duration $F_1(t)$ and LST of service time distribution is $\tilde{\rho}(s)$.

$\tilde{V}(s)$ LST of work in the special GI/G/1 queue.

$\tilde{W}(s)$ LST of customer arrival stationary distribution of the special GI/G/1 queue.

$\tilde{U}(s)$ LST of steady-state distribution of, $Z(t)$ observed at instants just after the renewal epochs.

We saw in the mean delay equation in the general approach [4.3] that the mean delay suffered by vehicles have two components, the work seen by the arrivals which is scaled by a factor of $\frac{c}{g}$, and the mean residual red time seen by arrivals that happen during the red times. This motivates us to find an expression for mean work in the system to calculate the mean delay suffered by an arriving vehicle into the intersection (queue).

4.2.1 Mean Work in the System

Then according to Sengupta [17] $Y(t)$ can be shown as the decomposition of work in a special GI/G/1 queue and an M/G/1 queue.
The steady state LST of the process $Y(t)$, $\tilde{R}_1(s)$ is given by

$$\tilde{R}_1(s) = \frac{1 - \lambda_1 b_1^{(1)}}{1 - \lambda_1 [(1 - \tilde{B}_1(s))/s]} \tilde{V}(s - \lambda_1 (1 - \tilde{B}_1(s)))$$ \hspace{1cm} (4.4)

Then the expected value of work in the system for the process $\{Y(t), t \geq 0\}$ is

$$r_1^{(1)} = \frac{\lambda_1 b_1^{(2)}}{2(1 - \lambda_1 b_1^{(1)})} + (1 - \lambda_1 b_1^{(1)}) v^{(1)}$$ \hspace{1cm} (4.5)

Similarly,

$$\tilde{U}(s) = \frac{1 - \lambda_1 b_1^{(1)}}{1 - \lambda_1 [(1 - \tilde{B}_1(s))/s]} \tilde{W}(s - \lambda_1 (1 - \tilde{B}_1(s)))$$ \hspace{1cm} (4.6)

and its expected value is given by

$$u^{(1)} = \frac{\lambda_1 b_1^{(2)}}{2(1 - \lambda_1 b_1^{(1)})} + (1 - \lambda_1 b_1^{(1)}) w^{(1)}$$ \hspace{1cm} (4.7)

The relationship between $v^{(1)}$ and $w^{(1)}$ is given by

$$v^{(1)} = \frac{\rho^{(2)}}{2 f_1^{(1)}} + \frac{\rho^{(1)}}{f_1^{(1)}} w^{(1)}$$ \hspace{1cm} (4.8)

(The 2 in [4.8] is missing in [17]).

The LST of steady-state distribution of $Z(t)$, $\tilde{R}_2(s)$ is ,

$$\tilde{R}_2(s) = \frac{\tilde{U}(s)(1 - \tilde{F}_2(\lambda_2(1 - \tilde{B}_2(s))))}{f_2^{(1)} \lambda_2 (1 - \tilde{B}_2(s))}$$ \hspace{1cm} (4.9)

and its mean is given by,
The expected work in the system for process \(\{X(t), t \geq 0\} \) is

\[
\begin{align*}
 r^{(1)} &= c_1 r^{(1)}_1 + c_2 r^{(1)}_2 \\
 r^{(1)} &= \frac{\lambda_1 b^{(2)}_1}{2(1 - \lambda_1 b^{(1)}_1)} + (1 - \lambda_1 b^{(1)}_1)(c_1 v^{(1)} + c_2 w^{(1)}) + \frac{c_2 \lambda_2 b^{(1)}_2 f^{(2)}_2}{2 f^{(1)}_2}
\end{align*}
\]

where,

\[
c_1 = \frac{f^{(1)}_1}{f^{(1)}_1 + f^{(1)}_2} ; c_2 = 1 - c_1
\]

Thus the equation [4.11] gives the mean work seen by an arrival into the queue (by PASTA as arrivals are Poisson distributed).

4.2.2 Mean Waiting Time

Sengupta [17] provides an analysis of mean waiting time in interrupted queues. We would look at this method of analysis and will conclude that the mean delay obtained by Sengupta reduces to the form of the mean delay expression that we had arrived at earlier [4.3].

To analyze the waiting-time distribution, [17] distinguishes between two types of customers, those who arrive during ON-period and those who arrive during OFF-period. For a customer who arrives during ON-period and sees \(x \) units of work, the waiting period must be \(x \) plus the length of the OFF-periods that occur during the depletion of the \(x \) units of work. Let us define the following parameters.

\(\Pi_i(t, x)dt \) is the joint probability density of
1. environment being in state i

2. time spent in state i element of $(t, t + dt)$

3. amount of work in the system is less than or equal to x

$W_i(t, x, y)$ probability that the waiting time is less than or equal to y given that a customer arrives when the environment is in state $i (= 1, 2)$, elapsed time in state i at the instant of arrival is t and the work in the system seen by the arrival is x.

$w_i^{(1)}(t, x)$ the expectation of the distribution of $W_i(t, x, y)$ for $i = 1, 2$.

$N(t, x)$ no:of renewals in $[0, x]$ for a delayed renewal process whose first renewal time has a distribution $F_1(t + z)/(1 - F_1(t))$ and has distribution $F_1(t)$ from second renewal time onwards.

W_q waiting time of a randomly chosen customer.

$m(t, x)$ $\mathbb{E}[N(t, x)]$

The mean waiting times for customers arriving during ON-periods and OFF-periods are given by.

$$w_1^{(1)}(t, x) = x + f_2^{(1)}(t, x)$$

$$w_2^{(1)}(t, x) = \int_0^{\infty} \frac{z dF_2(t + z)}{1 - F_2(t)} + w_1^{(1)}(0, x)$$

The waiting time distribution of a randomly chosen customer is given by,

$$P(W_q \leq y) = \frac{1}{\lambda} \sum_{i=1}^{2} \int_0^{\infty} \int_0^{\infty} \lambda_i \Pi_i(t, dx)W_i(t, x, y)dt$$

Taking expectation we get,
\[\mathbb{E} W_q = \frac{1}{\lambda} \sum_{i=1}^{2} \int_{0}^{\infty} \int_{0}^{\infty} \lambda_i \Pi_i(t, dx) w_i^{(1)}(t, x) dt \] (4.13)

\[= \lambda^{-1} \left(K + \lambda_1 f_2^{(1)} I_1 + \lambda_2 c_2 f_2^{(1)} I_2 \right) \]

where,

\[K = \lambda_1 c_1 r_1^{(1)} + \lambda_2 c_2 (r_2^{(1)} + \frac{f_2^{(2)}}{2 f_2^{(1)}}) \]

\[I_1 = \int_{0}^{\infty} \int_{0}^{\infty} \Pi_1(t, dx) m(t, x) dt \]

\[I_2 = \int_{0}^{\infty} dR_2(x) m(0, x) \]

and the overall arrival rate into the system, \(\lambda \) is defined by,

\[\lambda = \lambda_1 c_1 + \lambda_2 c_2 \]

4.2.3 Approximations for Mean Delay

To get approximate values of \(I_1, \Pi_1(t, s) \) is approximated by

\[\Pi_1(t, s) \approx c_1 \frac{(1 - F_1(t))}{f_1^{(1)}} \tilde{R}_1(s). \]

Here the approximation is that, we assume the work seen by a customer is independent of how deep into the green time he arrives. This needn't always be true. Its quite intuitive to see that ideally the work seen by customer tends to be lesser when he arrives late into the green time.
Also, by using the results of the equilibrium renewal process, we have

\[
\int_0^\infty \frac{(1 - F_1(t))}{f_1^{(1)}} m(t, x) dt = \frac{x}{f_1^{(1)}},
\]

Thus we have,

\[
I_1 \approx \frac{c_1 r_1^{(1)}}{f_1^{(1)}} \quad (4.14)
\]

For calculating \(I_2\), \[17\] gives the approximation,

\[
m(0, x) \approx \frac{x}{f_1^{(1)}} + \frac{f_1^{(2)}}{2[f_1^{(1)}]^2} - 1
\]

This gives ,

\[
I_2 \approx \frac{r_2^{(1)}}{f_2^{(1)}} + \frac{f_1^{(2)}}{2[f_1^{(1)}]^2} - 1 \quad (4.15)
\]

Sengupta \[17\] also gives approximations for the case where \(F_1(t)\) is deterministic. For this case,

\[
\frac{x + t}{f_1^{(1)}} - 1 \leq m(t, x) \leq \frac{x + t}{f_1^{(1)}}
\]

for \(0 \leq t \leq f_1^{(1)}\). Using the above expression,

\[
\frac{1}{f_1^{(1)}} \left[c_1 r_1^{(1)} + \frac{c_1 f_1^{(2)}}{2 f_1^{(1)}} \right] - c_1 \leq I_1 \leq \frac{1}{f_1^{(1)}} \left[c_1 r_1^{(1)} + \frac{c_1 f_1^{(2)}}{2 f_1^{(1)}} \right] \quad (4.16)
\]

and
\[
\left[\frac{r_2(1)}{f_1(1)} - 1 \right] \leq I_2 \leq \frac{r_2(1)}{f_1(1)}
\]

We see that for calculating \(I_1 \& I_2 \), the computation of \(r_1(1) \& r_2(1) \) are required. This in turn requires the computation of \(w^{(1)} \), mean waiting time of the special GI/G/1 queue. We use an approximation for this calculation. Let us define the following parameters,

\(T_A \) inter arrival time of GI/G/1 queue

\(T_H \) service time of GI/G/1 queue

\(T_W \) waiting time of GI/G/1 queue

\[
h = \mathbb{E}[T_H] ; A = \frac{\mathbb{E}[T_H]}{\mathbb{E}[T_A]} ; C_A^2 = \frac{\text{Var}(T_A)}{\mathbb{E}[T_A]^2} ; C_H^2 = \frac{\text{Var}(T_H)}{\mathbb{E}[T_H]^2}
\]

The mean waiting time in a GI/G/1 queue has been approximated [6] to

\[
\mathbb{E}[T_W] \approx \frac{Ah}{2(1-A)} \left(C_A^2 + C_H^2 \left\{ e^{-\frac{2(1-A)(1-C_A^2)^2}{C_A^2 + C_H^2}} \right\} \right), \text{ if } C_A^2 \leq 1
\]

\[
\approx \frac{Ah}{2(1-A)} \left(C_A^2 + C_H^2 \left\{ e^{-\frac{(1-A)(C_A^2-1)}{C_A^4+4C_H^4}} \right\} \right), \text{ if } C_A^2 \geq 1
\]

\section*{4.2.4 Numerical Comparison Between Various Approximations}

We compare the M/G/1 preemptive simulation with 4 approximations from the Queues with Interruption Model. The details for the traffic models used are given in [3.2].

The plots for each case are shown below.

lower bound uses the lower bound values for \(I_1 \) and \(I_2 \) from [4.16]

upper bound uses the upper bound values for \(I_1 \) and \(I_2 \) from [4.16]
CHAPTER 4. ANALYSIS OF QUEUES AT TRAFFIC INTERSECTIONS

general approx uses the approximations given for \(I_1 \) and \(I_2 \) in [4.14] and [4.15]

modified approx uses the approximation [4.14] for \(I_1 \) and uses the upper bound of [4.16] for \(I_2 \)

X-Axis degree of saturation = \(\frac{\lambda r}{g/c} \)

Y-Axis Mean Delay per mean Service Time = \(\frac{Mean\ Delay}{\tau} \)
Figure 4.1: Normalised Mean Delay V/s Degree of Saturation (Traffic Model-1) : Comparison between M/G/1 preemptive simulation, M/D/1 preemptive simulation and Queues with Interruption model using different approximations.
Figure 4.2: Normalised Mean Delay V/s Degree of Saturation (Traffic Model-2) : Comparison between M/G/1 preemptive simulation, M/D/1 preemptive simulation and Queues with Interruption model using different approximations.

From the plots we see that the modified approximation, that uses the approximation \[4.14\] for
CHAPTER 4. ANALYSIS OF QUEUES AT TRAFFIC INTERSECTIONS

I_1 and uses the upper bound of $[4.16]$ for I_2 matches really well with the M/G/1 model. Hence we will be using this approximation from now on. Also here on, the modified approximation will be refered to as M/G/1 preemptive interruption approximation.

Simplifying the Mean Waiting Time expression from Sengupta

Applying the M/G/1 preemptive interruption approximation $[4.2.4]$ to the expression for mean waiting time $[4.13]$, we get

$$I_1 \approx \frac{c_1 r_1^{(1)}}{f_1^{(1)}} \approx \frac{c_1 r_1^{(1)}}{g}$$

$$I_2 \approx \frac{r_2^{(1)}}{f_1^{(1)}} \approx \frac{r_2^{(1)}}{g}$$

Then

$$K \approx \lambda_1 c_1 r_1^{(1)} + \lambda_2 c_2 (r_2^{(1)} + \frac{f_2^{(2)}}{2 f_1^{(1)}})$$

$$\approx \lambda_1 c_1 r_1^{(1)} + \lambda_2 c_2 (r_2^{(1)} + \frac{r^2}{2r})$$

Thus the mean waiting time becomes,

$$E W_q \approx \lambda^{-1} (K + \lambda_1 f_2^{(1)} I_1 + \lambda_2 c_2 f_2^{(1)} I_2)$$

$$\approx \lambda^{-1} (K + \lambda r I_1 + \lambda c_2 r I_2)$$

$$\approx c_1 r_1^{(1)} + c_2 r_2^{(1)} + \frac{r}{g} (c_1 r_1^{(1)} + c_2 r_2^{(2)}) + \frac{c_2 r}{2}$$

$$= \frac{c}{g} r^{(1)} + \frac{r^2}{2c}$$

(4.19)
We see that the mean waiting time expression for preemptive M/G/1 Interrupted queue model \[[17] \] matches the form of mean delay formula that we had computed earlier \([4.3]\).

4.2.5 Comparison between the Approximation \([4.19]\) and Simulation

In the plots given below we will compare the Sengupta analysis with the simulations of the model that we have for traffic at signalized intersections.
Figure 4.3: Normalised Mean Delay v/s Degree of Saturation (Traffic Model-2) [4.2.4]: Comparison between simulations of preemptive M/D/1, M/G/1, M/SM/1 models and Sengupta Analysis.
Figure 4.4: Normalised Mean Delay v/s Degree of Saturation (Traffic Model-3) [4.2.4] : Comparison between simulations of preemptive M/D/1, M/G/1, M/SM/1 models and Sengupta Analysis.
Figure 4.5: Normalised Mean Delay v/s Degree of Saturation (Traffic Model-4) [4.2.4]: Comparison between simulations of preemptive M/D/1, M/G/1, M/SM/1 models and Sengupta Analysis.

From the plots we see that Sengupta analysis works really well for both M/D/1 and M/G/1 service models. Sengupta analysis assumes successive service times to be independent. It would
be very difficult to extend the whole of Sengupta analysis for semi Markov service models. Also, no closed form expressions are available for analysing the delay in M/SM/1 queues. So we will look at other analytical models to see if we could find approximations for the interrupted queues with semi Markov service.

4.3 Webster’s Approximation

Webster [21] gives an expression to calculate the mean delay suffered by vehicles while waiting at a traffic intersection. The expression is

\[
 d = r^2 \frac{x^2}{2c(1 - \frac{g}{c}x)} + x^2 \frac{2}{2\lambda(1 - x)} - 0.65\left(\frac{c}{\lambda^2}\right)^{\frac{1}{3}} x^{2+\frac{2}{5}}
\]

(4.20)

We will analyse each term of Webster’s formula separately. To explain the first term assume the following. One, traffic arriving is fluid. Two, the traffic arriving during red time gets cleared exactly at the end of green time.

![Figure 4.6: Fluid arrival of traffic and traffic arriving during red times getting serviced exactly in the green times.](image)

From the figure [4.6] the total queue occupancy during the whole period is the area under the graph. This is,
The total queue occupancy is over a full cycle time \((c = g + r) \). So, average queue occupancy during the cycle = \(\frac{1}{2} \frac{r^2 s \lambda}{c} \). Hence we get from Little’s Theorem, the mean delay = \(\frac{1}{2} \frac{r^2 s \lambda}{(s - \lambda)c} \). Now, substituting \(r = c - g \), we get mean delay = \(\frac{1}{2} \frac{c(1 - \frac{g}{c})^2}{(1 - \frac{g}{c})} \). Using the fact that \(x = \frac{\lambda}{s} \), we get, \(\frac{\lambda}{s} = g \frac{x}{c} \). Substituting this we get, mean delay = \(\frac{1}{2} \frac{c(1 - \frac{g}{c})^2}{(1 - \frac{g}{c}x)} \). This gives the first term of Webster’s expression. Thus we see that the first term of Webster’s expression gives the mean delay suffered by a fluid traffic, when the traffic arriving during red time is completely cleared during the green time. Newell [12] discusses that this term gives a good approximation for the mean delay, when the arrival rate is less and not close to the saturation flow value. We would find later in this section by term-by-term comparison with the simulations that this term together with a correction term, also approximates the mean residual red time seen by arrivals into the red time [4,3].

When the arrival rate increases, it is not reasonable to assume that the work arriving in a cycle empties during that cycle itself. There will be work that overflows from one cycle to the next cycle. The mean overflow queue length is the mean length of the queue at the end of a green period. Newell [12] gives an approximation for the contribution of the overflow queue to the mean delay seen at a signalised intersection. Clearly, the mean delay only depends on the mean queue length and not on the order in which the vehicles are served. So at higher arrival rates, when the mean overflow queue length is non-zero, let us consider that the server serves in a last come first served manner. The new arrivals which are served first will see mean delay same as the first term of Webster’s expression. The mean overflow queue length present at the beginning of the cycle would approximately encounter a delay of, \(r + g = c \), per cycle. Thus, Newell gives the approximation for mean delay as,
\[d \approx \frac{r^2}{2c(1 - \frac{g}{c}x)} + \frac{c\mathbb{E}[Q_0]}{c\lambda} \]

where \(\mathbb{E}[Q_0] \) is the mean overflow queue length. So this must be what Webster was trying to approximate using his second and third terms.

The mean delay in a M/D/1 queue is given by, \(\frac{\rho^2}{2\lambda(1-\rho)} \). For a service rate reduced by a factor of \(\frac{g}{c} \), we get \(\rho = \frac{\lambda}{x} = x \). Using this, we get the mean delay of an M/D/1 queue to be equal to \(\frac{x^2}{2\lambda(1-x)} \). This gives the second term in Webster’s equation. Thus the second term in Webster’s equation is actually the mean delay suffered in an uninterrupted M/D/1 queue for an arrival rate given by \(\lambda \) and service rate, \(s \frac{g}{c} \). We would find later that this term along with part of the correction term provides an approximation for the mean delay experienced by an arrival excluding the residual red times.

The third term in Webster’s expression is an empirical correction term for higher loads used by Webster [21].

4.3.1 What is Webster’s Formula Approximating?

We compare the Webster approximation with the simulations of the three models that we are considering (M/D/1, M/G/1 and M/SM/1). The details for Traffic model 2 and 3 are given in Table [3.2] and [3.3].
Figure 4.7: Normalised Mean Delay v/s Degree of Saturation (Traffic Model-1) : Comparison between M/G/1 simulation (preemptive and non preemptive), M/D/1 preemptive simulation and Webster’s approximation.

(a) Cycle Time = 60s, Green Time = 20s.

(b) Cycle Time = 60s, Green Time = 50s.
Figure 4.8: Normalised Mean Delay v/s Degree of Saturation (Traffic Model-2): Comparison between M/G/1 simulation model (preemptive and non-preemptive), M/D/1 preemptive simulation and Webster’s approximation.

From the plots we see that the Webster’s model matches perfectly with the preemptive M/D/1 simulation. Thus it is clear that Webster was modeling the preemptive case. It is also clearly
evident that the $M/G/1$ simulation and $M/D/1$ simulations gives significantly different delays at higher values of degrees of saturation \[3\] i.e. when rate of arrival is high for given service distribution. But an $M/D/1$ model is not realistic for a traffic intersection. The different vehicles realistically will have different service times, depending on which type of vehicle precedes it. But Webster’s approximation does not match well with the preemptive $M/G/1$ simulation. If we could understand each term of Webster’s approximation better and identify what exactly each term is approximating, then we might be able to find an extension of Webster’s analysis for $M/G/1$ and $M/SM/1$.
Chapter 5

Understanding and Extending Webster’s Formula

In the previous chapter we saw that the Webster’s approximation matches the preemptive M/D/1 simulation, i.e., the M/D/1 interrupted queue. We also discussed about Webster’s intuition behind each term in his formula, where the first term is the mean delay assuming that the mean overflow queue length is zero (which is a good approximation for low arrival rates), and the second term represents the contribution of mean overflow queue length to the mean delay (which is significant at higher arrival rates). In this chapter we will compare the terms from Webster’s formula with the general mean delay formula \[4.3\] and Sengupta approximation for mean delay \[4.19\], i.e., we will identify which component in the mean delay suffered by vehicles at an intersection \[4.3\], each of the terms are trying to approximate.

5.1 Understanding Webster’s Approximation

At an intersection a vehicle can arrive either during a green period or a red period. If it arrives during a red period, it has to wait for the remaining red time to end before the server becomes active. But this is zero for a vehicle arriving during the green time. Here we compare the delay
due to mean residual red time and the mean delay experienced excluding the mean residual red time, for an arriving vehicle, from the simulations with the mean residual red time and the expanded mean work \[4.19\] for the approximation by Sengupta (M/D/1) \[17\] \[4.19\] and the fluid approximation term and the M/D/1 mean delay term from Webster’s approximation \[4.20\].
Figure 5.1: Traffic Model-3 [3.3]: Comparison between the mean delay excluding the residual red times and the residual red-times of simulation, M/D/1 preemptive interruption approximation [17] and Webster’s approximation [21].

From the above plots we see that the fluid approximation term of Webster’s equation together with the correction term seems to be closely approximating the mean residual red times of the simulation. Also the mean residual red time of M/D/1 interrupted queue matches the mean...
residual red time of simulation really well, especially at lower loads. And the M/D/1 mean delay term of Webster’s formula seems to be approximating the sum of mean work and the mean red time required in between the completion of that work. For the M/D/1 interrupted queue approximation by Sengupta these terms matches exactly. This tells us that the M/D/1 mean delay term of Webster is approximating the sum of, mean work seen by an arrival and the mean red times encountered in between the completion of that work. And, the fluid approximation term is approximating the mean residual red time seen by an arrival into the red time. The correction term is required for both the approximation terms at higher loads. This is evident from the case where green time = 20s.

Thus, we can conclude that the Webster’s formula approximates the preemptive M/D/1 model by having two terms, one which approximates the mean residual red time and another term which approximates the sum of mean work seen by an arrival and the mean red time encountered in between the exhaustion of the work seen on arrival, which is actually the mean delay in an M/D/1 queue with the service time process scaled by a factor of $\frac{g}{c}$.

We will now look to extend the Webster’s formula to preemptive M/G/1 and M/SM/1 models. We will do this by replacing the M/D/1 delay term for the preemptive M/D/1 case, by the corresponding delay term for the service model that we use i.e., for preemptive M/G/1 model, we will use the mean delay term for an M/G/1 queue with service time process scaled by a factor of $\frac{g}{c}$. Similarly for the M/SM/1 case also. In the case of M/SM/1 model, it is not possible to find a closed for expression for mean delay. Hence we will use numerical methods to find the mean delay for an M/SM/1 queue with given poisson arrival process and a semi Markov service process, as we have already discussed [1].
5.2 Extending Webster’s Approximation to M/G/1 and M/SM/1 models

5.2.1 Extending Webster’s Approximation to M/G/1 model

It was explained earlier[4.3] that Webster’s 2nd term is the mean delay for a M/D/1 queue with service rate deflated by a factor of \(\frac{g}{c} \) (service time inflated by a factor of \(\frac{c}{g} \)). Since the service distribution for vehicles follows a general distribution rather than a deterministic distribution, we replace the 2nd term of Webster’s formula by the mean delay for an M/G/1 queue with service time inflated by a factor of \(\frac{c}{g} \). This model will be called as Webster M/G/1 model while the original Webster’s model will be called as Webster M/D/1 model in subsequent chapters.

The mean delay of M/G/1 queue with service time random variable \(X \), is given by

\[
\frac{\rho \mathbb{E}[X^2]}{2 \mathbb{E}[X](1 - \rho)}
\]

Using the fact that service times are inflated by \(\frac{c}{g} \), this expression becomes

\[
\frac{\lambda b^{(2)}}{2(1 - x)(\frac{c}{g})^2}
\]

Thus Webster’s expression for mean delay is modified as

\[
d = \frac{c(1 - \frac{g}{c})^2}{2(1 - \frac{g}{c}x)} + \frac{\lambda b^{(2)}}{2(1 - x)(\frac{g}{c})^2} - 0.65\left(\frac{c}{\lambda^2} \right)^{\frac{1}{3}} x^2 + 5 \frac{c}{g}
\] (5.1)

In the Numerical section in next chapter we will see how well this analytical model approximates the M/G/1 simulation model. We will see that this model works quite well towards meeting that aim.
5.2.2 Extending Webster’s Approximation to M/SM/1 model

Here we attempt to extend the Webster’s approximation to get an analytical mode that approximates the M/SM/1 model. The M/G/1 preemptive approximation given by Sengupta’s[17] model will be quite hard to extend to an M/SM/1 model as we does not have any closed form expression for an M/SM/1 queue. Hence we look to extend the Webster’s formula to get an approximation model that will fit the M/SM/1 model. In M/SM/1 model, the arrivals are poisson distributed and the service times are Markov i.e. the service time for a given vehicle depends on the vehicle preceding it. For vehicle types $i, j \in \mathcal{V}$, the service time distribution T for vehicle type i when preceded by vehicle type j is given by,
\[
P(T = t | X_k = j, X_{k+1} = i) = \begin{cases} 1 & \text{if queue is non-empty when vehicle } i \text{ arrives} \\ t = t_{ji} & \forall j \in \mathcal{V} \end{cases}
\]
and,
\[
P(T = t | X_k = j, X_{k+1} = i) = \begin{cases} 1 & \text{if queue is empty when vehicle } i \text{ arrives} \\ t = l_i/v_s & \forall j \in \mathcal{V} \end{cases}
\]
This makes the model state-dependent.

While considering the queue length process, Q, at departure instances for this model, we see that
\[
P(Q_{k+1} = y, X_{k+1} = j | Q_k = q, X_k = i) = \begin{cases} f_{ij}a_{ij}^{(y-q+1)} & q > 0 \\ f_{ij}b_{ij}^{(y-q)} & q = 0 \end{cases}
\]
where $a_{ij}^{(l)} = \frac{(\lambda t_{ij})e^{-(\lambda t_{ij})}}{l!}$, $b_{ij}^{(l)} = \frac{(\lambda l^{(i)})e^{-(\lambda l^{(i)})}}{l!}$, and $l^{(i)} = \frac{L}{v_s}$

We can represent this using probability transition matrix for the queue length process, Q, at departure instances as given below.
CHAPTER 5. UNDERSTANDING AND EXTENDING WEBSTER’S FORMULA

\[
P = \begin{bmatrix}
 B_0 & B_1 & B_2 & \ldots & \ldots \\
 A_0 & A_1 & A_2 & \ldots & \ldots \\
 0 & A_0 & A_1 & \ldots & \ldots \\
 0 & 0 & A_0 & \ldots & \ldots \\
 \mathbf{\ldots} & \mathbf{\ldots} & \mathbf{\ldots} & \mathbf{\ldots} & \mathbf{\ldots}
\end{bmatrix}
\]

where \(\{B_l\}_{ij} = b^{(l)}_{ij} \), and \(\{A_l\}_{ij} = a^{(l)}_{ij} \).

This now becomes takes the form of a Markov Chain of M/G/1 type. This was solved for steady state probability vector \(\pi \), using Matlab toolset, where \(\pi_k \) represents the steady state probability that queue length is \(k \). Using \(\pi \) the mean queue length \(\bar{q} \) is calculated.

Little’s Law tells that, \(\bar{q} = \lambda \bar{s} \), where \(\bar{s} \) is the mean sojourn time. Thus we can calculate the mean waiting time to be \(\bar{w} = \frac{\bar{q}}{\lambda} - \tau \), where \(\tau \) is the mean service time. Since the M/SM/1 analysis is carried out for the interrupted queue, the service time distribution has to be increased by a factor of \(\frac{c}{g} \).

Thus the Webster formula for the M/SM/1 model, for a given \(\lambda \) becomes,

\[
d = \frac{c(1 - \frac{g}{c})^2}{2(1 - \frac{g}{c}\bar{x})} + \bar{w} - 0.65\left(\frac{c}{\bar{x}}\right)^{1.4}\bar{x}^{2.5} + \frac{\bar{w}}{\bar{q}}
\]

The plots for the Traffic Model-2 [3.2] and Traffic Model-3 [3.3] are shown below.

From the plots it is evident that the Interrupted Queue model fits well with the M/G/1 simulation model, while the modified Webster model(with M/G/1 waiting time) also matches the M/G/1 simulation pretty well. The Webster’s model seems to match the M/D/1 simulation quite well. The Webster Model (with M/SM/1 waiting time) matches the M/SM/1 simulation quite well.
5.3 Numerical Study of Extensions of Webster’s model

In this section we compare the Webster’s model and the extensions of Webster’s model with the simulations of M/D/1, M/G/1, M/SM/1 models. We consider Traffic Model 2, which has higher variance but trivial probability distribution and Traffic Model 3, whose probability distribution is non-trivial. Traffic Model 2 is given in detail in Table [3.2] and Traffic Model 3 is given in detail in Table [3.3].
Figure 5.2: Normalised Mean Delay V/s Degree of Saturation (Traffic Model-2) : Comparison between preemptive simulation of M/D/1, M/G/1 and M/SM/1 models and Webster approximation and its extensions.
Figure 5.3: Normalised Mean Delay V/s Degree of Saturation (Traffic Model-3) : Comparison between preemptive simulation of M/D/1, M/G/1 and M/SM/1 models and Webster approximation and its extensions.
From the plots it is clear that the Webster’s approximation extended to M/G/1 matches well with the M/G/1 preemptive simulation, while the original Webster’s approximation matches
perfectly well with M/D/1 preemptive simulation and the Webster’s approximation extended to M/SM/1 matches the M/SM/1 preemptive simulation quite well too. Thus we have analytical models that can approximate the three models that we have considered.

5.4 Variants of Webster’s Approximation

Here we propose and analyse a variant of Webster’s approximation to see if we can identify a simpler approximation than Webster’s. The variant has its fluid approximation term different from the original Webster’s expression.

5.4.1 Webster Variant I: Modified first term and correction term

In section 4.3 we saw that the first term (fluid approximation term) and the correction term from Webster’s approximation together approximates the mean residual red time seen by arrivals. Hence we suggest an approximation which uses the mean residual red time instead of the fluid approximation term and a correction term, arrived at empirically. In this approximation model, the mean delay suffered by vehicles is given by,

\[d = \frac{r^2}{2c} + \frac{x^2}{2\lambda(1-x)} - 0.3\left(\frac{c}{\lambda^2}\right)^\frac{1}{2}x^{2+5\frac{2}{y}} \]

The plots comparing the mean delay obtained from simulations and the mean delay obtained from the above approximation model, for Traffic Model-3 [3.3], are given below.
Figure 5.5: Normalised Mean Delay V/s Degree of Saturation (Traffic Model-2) : Comparison between preemptive simulation of M/D/1, M/G/1 and M/SM/1 models and Webster approximation with modified fluid approximation term.
Figure 5.6: Normalised Mean Delay V/s Degree of Saturation (Traffic Model-3) : Comparison between preemptive simulation of M/D/1, M/G/1 and M/SM/1 models and Webster approximation with modified fluid approximation term.
Figure 5.7: Normalised Mean Delay V/s Degree of Saturation (Traffic Model-4) : Comparison between preemptive simulation of M/D/1, M/G/1 and M/SM/1 models and Webster approximation with modified fluid approximation term.

From the plots we see that Webster Variant I approximates each of the 3 models (M/D/1, M/G/1, M/SM/1) reasonably well. From the plots for traffic model 4, we observe that the correction
term mostly corrects the fluid term of Webster’s formula.

5.5 Conclusion

The Webster’s approximation was approximating the M/D/1 preemptive model. Even though the Sengupta analysis uses the same model that we are using for the traffic at signalized intersection, it is an approximation. Sengupta analysis for interrupted queue analysis approximates the M/D/1 and M/G/1 models quite well but extending it to M/SM/1 model would be quite complex and difficult, due to lack of analysis available for M/SM/1 queues in general. Webster’s model when extended to M/G/1 and M/SM/1 models provides good approximations. Thus we are able to provide approximation to models with all 3 service models. The Webster Variant I provides approximations quite similar to the Webster’s model.
Chapter 6

Optimisation of Signal Timings

One of the main objectives for developing an analytical model for mean delay estimation, is to be able to optimally compute the signal timings at an intersection so as to minimize the mean delay seen by a vehicle at the intersection. Having concluded that Webster’s formula (and its extensions) provide good approximations for mean delay at traffic intersections (deterministic service times, i.i.d service times, and semi-Markov service model), we would attempt to compute the optimal signal timings at an intersection that minimizes the mean delay at the intersection. We ignore the empirical correction term from the Webster’s delay formula in the following optimization problem.

Given λ_j is the arrival rate in j^{th} lane to an intersection, τ_i is the mean service time in i^{th} lane, and $\tau_i^{(2)}$ is the second moment of service time distribution of i^{th} lane, c is the cycle time. Let us define

$$\lambda^{(i)} = \frac{\lambda_i}{\sum_{j=1}^{L} \lambda_j}$$

and the mean delay in i^{th} lane as,

$$d_i = \frac{c(1 - \frac{g_i}{c})^2}{2(1 - \lambda_i \tau_i)} + \frac{\lambda_i \tau_i^{(2)} (\frac{g_i}{c})^2}{2(1 - \lambda_i \tau_i \frac{g_i}{c})}$$
The Optimization problem turns out to be,

$$\min \sum_{i=1}^{L} \lambda^{(i)} d_i$$

subject to

$$\sum_{i=1}^{L} g_i + \Delta \leq c$$

$$g_i \geq g_{min}$$

$$\frac{g_i}{c} \geq \lambda_i \tau_i$$

$$g_i \geq 0$$

Since d_i is a convex function of g_i, the optimal point is actually the global optimal point.

We solved this optimization problem using an optimization software LINGO. The optimization problem was solved for two different sets of traffic intersections. The solution is provided in the tables given below.

<table>
<thead>
<tr>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
<th>g_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.1</td>
<td>39.2</td>
<td>76.5</td>
<td>20.2</td>
</tr>
<tr>
<td>98.15</td>
<td>37.11</td>
<td>75.37</td>
<td>20.355</td>
</tr>
</tbody>
</table>

Table 6.1: Optimizing the signal timings at an intersection where all 4 roads follow Traffic Model 3 [3.3]. $g_{min} = 8s$ and $L = 4$
From the results we see that, the optimal timings for M/D/1 and M/G/1 models are very close to each other. The mean delays seen at optimal signal timings would be different for both the models, but the optimal timings that minimizes their respective mean delays are the same. From table 6.3, it is clear that when the arrival rates in all the incoming lanes are similar, the optimal green time allotted is proportional to the mean service time (or to the load in the lane). Also when the load in the incoming lanes are similar (second column of table 6.3), the optimal green times allotted are proportional to the arrival rates, which is quite reasonable as the mean delays of individual lanes are weighed proportional to their arrival rates.
Chapter 7

Tandem Queues

In this chapter we provide very preliminary results on analysis of two intersections arranged in such a way that the vehicle arrivals into the second intersection are supplied by the first intersection. We aim to compute the mean delay encountered by a vehicle at the second intersection and also to compute the mean delay encountered by the vehicle across the two intersections.

Figure 7.1: Tandem Queue: The arrivals into the second intersection is supplied by the first intersection.
Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>distance between the two queues (in meters)</td>
</tr>
<tr>
<td>v_c</td>
<td>cruising velocity of vehicles while traversing D</td>
</tr>
<tr>
<td>$offset$</td>
<td>synchronization of green times of the two intersections. Start of n^{th} green time of Queue 2 - Start of n^{th} green time of Queue 1</td>
</tr>
</tbody>
</table>

We will analyse this setting as a 2-stage Tandem queue without feedback, where each queue is a queue with service interruption. We will consider a simple setting, where the first intersection is modelled as a M/D/1 queue with interruption and the service process at the second queue is deterministic. We will also assume that the $offset = 0$.

Assumptions

1. There are no additional stream of vehicles merging with the stream of vehicles coming from queue 1.

2. Vehicles do not overtake during their transit from queue 1 to queue 2.

3. Since a vehicle follows the same vehicle at both the intersections (from assumption 1), the service time of a particular vehicle would be the same at both the intersections.
The mean delay across a tandem queue containing 2 queues back-to-back can be split into 4 components.

1. The mean delay at Queue 1

2. Mean service time at Queue 1

3. The delay encountered while cruising from Queue 1 to Queue 2 (distance between the queues / cruise speed)

4. The mean delay at Queue 2.

In Webster’s analysis we saw that the first term, which is the fluid model assuming that the work arriving in a cycle empties within that cycle, provides a good approximation when the arrival rate is small \[\frac{1}{\tau} \]. When the arrival rate into the first queue becomes close to the saturation flow rate, the departure rate from the first queue during the green period becomes \(\frac{1}{\tau} \), and since we are considering deterministic service at both intersections, the arrivals into the second intersection would happen at regular intervals of \(\tau \) for a duration equal to the green period, and also the service happens during the green time at regular intervals of \(\tau \). This is similar to the model that Clayton had \[\frac{1}{\tau} \]. And Clayton approximated the mean delay of such a queue using just the
mean delay for the fluid model. Hence, we will analyse the second queue using just the fluid model.

To work out the mean delay, assuming the fluid model, for queue 2, consider a \(r + g \) cycle in first queue. Work gets accumulated at rate \(\lambda \) during the red time, \(r \). When light turns green, the server will begin to empty this work at rate \(\frac{1}{\tau} \). But during the green time work arrives at rate \(\lambda \). So server empties work at rate \(\frac{1}{\tau} \), for a duration \(y \) given by,

\[
\begin{align*}
 r\lambda + y\lambda &= \frac{y}{\tau} \\
 y &= \frac{r\lambda}{\frac{1}{\tau} - \lambda}
\end{align*}
\]

for the remaining \(g - y \) duration, server empties work at rate \(\lambda \). This would be the fluid arrival into queue 2. Let us consider an example with parameters as given in the following table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)</td>
<td>1.5km</td>
</tr>
<tr>
<td>(v_{cruise})</td>
<td>10m/s</td>
</tr>
<tr>
<td>(offset)</td>
<td>0s</td>
</tr>
</tbody>
</table>

Table 7.1: Tandem Queue- Case 1: Parameters

Work leaving the first queue at the beginning of a green period will arrive into the second queue after \(\frac{D}{v_{cruise}} \) seconds, i.e., 150s, for the case considered, i.e., 30s into a cycle. The work will arrive at rate \(\frac{1}{\tau} \) for a duration of \(y \) seconds, and for the remaining \(20 - y \) seconds, work arrive at rate \(\lambda \). During the next green period the accumulated work empties at rate \(\frac{1}{\tau} \).
Figure 7.3: Tandem Queue (case 1): Analysis of mean delay at Queue 2 assuming work to be fluid (a single cycle is considered); \(g = 20\), \(c = 60\), and offset = 0

The server at queue 2 empties the work at rate \(\frac{1}{\tau}\).

Fluid delay was calculated as follows,

Given that \(W\) is the area of the figure given above (fluid waiting time per cycle) and \(c\lambda\) is the number of arrivals per cycle, mean delay per vehicle, \(\bar{w}\), is given by

\[
\bar{w} = \frac{W}{c\lambda}
\]

The mean delay for the first queue, \(d_1\), is approximated using the Webster’s formula

Given that the mean completion time at intersection 1 is given by \(d_{\text{service}}\), the total delay across the tandem queue is

\[
d \approx d_1 + d_{\text{service}} + \frac{D}{v_{\text{cruise}}} + \bar{w}
\]
CHAPTER 7. TANDEM QUEUES

(a) mean service times are calculated as $\frac{\tau}{g/c}$

(b) Service times for queue 1 are matched with values got from simulation.

Figure 7.4: Total delay of Tandem Queue (Traffic Model 3): queue 1 is modeled as M/D/1. $g = 20$, $c = 60$, and $\text{sync} = 0$.

The plots show that the mean delay obtained from the analysis matches well with the mean delay obtained from the simulation (with less than 5% error). Thus the fact that we can approximate the mean delay of the second queue with the fluid model is quite interesting.
Chapter 8

Extending Modeling and Analysis to Motorcycle Traffic

In the previous chapters we have modelled and analysed signalised traffic intersections where vehicles wait in the queue one behind the other. But in developing countries like India a huge proportion of the traffic is made of 2 wheelers which rarely stand behind a vehicle on arriving at an intersection. 2 wheelers tend to penetrate the queue and batch up with other vehicles types whenever it finds free spaces. Hence it is becomes necessary to look at heterogenous traffic, if we are to find models for accurate estimation of mean delays at intersections serving such kind of traffic.

8.1 Motorcycles at a Signalized intersection

In chapter [3] we discussed the modeling of queues at an intersection. In this section we would extend the model to include motorcycle traffic (2 wheelers). Separate attention is required for the modeling of motorcycles, because motorcycles at an intersection behaves quite different to how larger vehicles behave. Motorcycles arriving into a queue can find its way through the free spaces left between larger vehicles and finally settle at a position more closer to the stop line.
(HOL position). It is this behaviour that we intend to model.

Figure 8.1: Batching in 2-wheeler Traffic

1. Motorcycles can navigate through the open spaces in between the larger vehicles and move closer to the HOL position, reducing the mean delay they will see at the intersection.

2. At the intersection, motor cycles will either stand by themselves in groups (of say, 1 – 4), or together with larger vehicles (stand by the sides of larger vehicles). For example, a car can accommodate atmost 2 motorcycles by its side, while a bus can accommodate no motorcycles by its side.

3. If a motorcycle stands along with a larger vehicle, it will affect the service time of the larger vehicle. This happens because it is natural for the driver of the larger vehicle to be more cautious when there are two-wheelers standing near the vehicle. This affects his exit speed and thus affects his service time. In our model we would assume that the effective length of the vehicle increases (exit speed remains unchanged) when a motorcycle stands along with it, instead of considering the exit speed to be reduced.
4. Larger vehicles, though they do not allow motorcycles to stand by their side, would allow the motorcycles to pass through their sides to occupy vacant spaces in the front.

Comparison between traffic containing 2 wheelers which allows batching and does not allow batching

We compare a model which does not allow batching of 2 wheelers (2 wheeler arrivals stand at the back of the queue instead of penetrating the queue) and a model that allows for 2 wheelers to batch with other vehicle types, to see how the mean delay for a given arrival rate changes when 2 wheeler batching occurs.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Traffic Model - MC</th>
<th>Traffic Model - MC (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{V}</td>
<td>${m, c}$</td>
<td>${m, c}$</td>
</tr>
<tr>
<td>${l_m, l_c}$</td>
<td>${2m, 6m}$</td>
<td>${2m, 6m}$</td>
</tr>
<tr>
<td>${d_m^{(2)}, d_m^{(4)}, }$</td>
<td>${2.5m, 3m, }$</td>
<td>${2.5m, 3.5m, }$</td>
</tr>
<tr>
<td>$d_{mc}^{(0)}, d_{mc}^{(2)}$</td>
<td>$7m, 8.5m,$</td>
<td>$7m, 9.5m,$</td>
</tr>
<tr>
<td>$d_{cm}^{(2)}, d_{cm}^{(4)},$</td>
<td>$3m, 3.5m,$</td>
<td>$3m, 4m,$</td>
</tr>
<tr>
<td>$d_{cc}^{(0)}, d_{cc}^{(2)}$</td>
<td>$8m, 9.5m}$</td>
<td>$8m, 10.5m}$</td>
</tr>
<tr>
<td>${f_{mm}, f_{mc}, f_{cm}, f_{cc}}$</td>
<td>${0.7, 0.3, 0.6, 0.4}$</td>
<td>${0.7, 0.3, 0.6, 0.4}$</td>
</tr>
<tr>
<td>${\pi_m, \pi_c}$</td>
<td>${0.667, 0.333}$</td>
<td>${0.667, 0.333}$</td>
</tr>
</tbody>
</table>

Table 8.1: Parameters used for traffic flow containing motorcycles. The difference between Traffic Model - MC and Traffic Model - MC (2) is that in MC(2) we increase the service time to allow for decrease in exit speed due to batching.

X-axis Degree of Saturation = $\frac{\lambda \tau}{g/c}$; where τ is the mean service time of the FCFS queue (queue with no batching) of Traffic Model - MC.
Figure 8.2: Normalised Mean Delay V/s Degree of Saturation (Traffic Model-MC) : Comparison between preemptive simulation of M/SM/1 interrupted model which allows batching of MCs with other vehicle types (two different service models), preemptive simulation of M/SM/1 interrupted model which does not allow batching with other vehicle types. Degree of Saturation uses the mean service time of the FCFS queue.

We see that batching of 2 wheelers with other vehicles actually decreases the mean delay at an intersection. Also, it allows the intersection to handle higher loads without becoming saturated. We also see that the decrease in mean delay is actually dependent on the effect batching of 2 wheelers has on the other vehicle types. So batching is good!!, apparently.

8.2 Analysis of Queues containing Motorcycles at a Signalized intersection

We will assume a simple case, where only 2 types of vehicles, 2 wheelers and cars exist. Also, the 2 wheelers always arrive in batches of 2. To derive the arrival rates and the following probabilities of these batches of vehicles, from the real model, we will use the idea of assembly
queues. Consider the above example of queue comprising of two types of vehicles, car and motorcycles.
Notation

- \(\lambda \) rate of arrivals into the intersection (arrivals per second)
- \(\lambda_m \) rate of motorcycle arrivals into the intersection (arrivals per second)
- \(\lambda_c \) rate of arrival of cars into the intersection (arrivals per second). We assume \(\lambda_m > \lambda_c \) for the Markov chain to be positive recurrent.
- \(M_4 \) batch of 4 motorcycles
- \(M_2 \) batch of 2 motorcycles
- \(C_0 \) batch comprising of a car alone
- \(C_2 \) batch comprising of a car and two motorcycles
- \(\mathcal{V} \) set of batches of vehicles arriving into the interrupted queue (\(\mathcal{V} = \{ M_2, M_4, C_0, C_2 \} \))
- \(\lambda_i, i \in \mathcal{V} \) rate of departure of a batch \(i \) from the assembly queue
- \(\chi \) set of states in the Markov chain (\(\chi = \{ 1', 0, 1, 2, \ldots \} \))
- \(a_i(x) \) rate of departure of batch type \(i, i \in \mathcal{V} \) from state \(x, x \in \chi \)
- \(\phi_j(x) \) probability that the next departure from the assembly queue is of batch \(j \) given that currently the system is in state \(x \)
- \(\nu_x \) stationary probability that the Markov chain is in state \(x, x \in \chi \)
- \(f_{ij} \) probability that a batch \(j \) follows a batch \(i \)
- \(q_0 \) probability that the interrupted queue is empty
- \(q_1 \) probability that interrupted queue has exactly one vehicle in the system
- \(\mu \) mean service rate of vehicles at the interrupted queue
In this case, there are two queues, one each for cars and motorcycles. Cars arrive into queue-1 as a Poisson process with rate λ_c and motorcycles arrive in batches of 2, into queue-2 as a Poisson process with rate λ_m.
Consider a Markov chain with possible states \{1', 0, 1, 2, \ldots \}. Initially when the queues are empty, the Markov chain is in state 0. Assume that a car arrival occurs next. Now the Markov chain moves to state 1 if the interrupted queue is non-empty. Assume another car arrival occurs, causing the Markov chain to move to state 2 (irrespective of whether the interrupted queue is empty or not). If a motorcycle arrive occurs next, the Markov chain will move to state 1 and a batch comprising of a car and two motorcycles will depart into the interrupted queue. Similarly another motorcycle will take the Markov chain to state 0. Now if a motorcycle arrival happens next and the interrupted queue is non-empty, Markov chain will move to state 1'. Once the Markov chain is in this state, irrespective of a car arrival or a motorcycle arrival, the Markov chain will move to state 0, i.e., if the arrival is car, a batch comprising a car and two motorcycles will leave and if the arrival is of motorcycles, then a batch of 4 motorcycles will depart.

Also, whenever an arrival occur while the Markov chain is in state 0 and the interrupted queue is empty, the vehicle is immediately released to the interrupted queue. When the Markov chain is in any state other than 0 and the interrupted queue turns empty, then the vehicle at the head of the assembly queue will be released to the interrupted queue.
This model realistically captures the batching process that occurs at an intersection.

The Markov chain is solved to get the stationary probabilities $\nu_x, x \in \chi$. Once we have the stationary probabilities, we can compute the rate of departure of each batch from the assembly queue (arrival rate of each batch into the interrupted queue)

$$\lambda_i = \sum_{x \in \chi} \nu_x a_i(x), i \in \mathcal{V}$$

The following probabilities for the batches into the interrupted queue can be calculated as follows

$$f_{ij} = \frac{\sum_{x \in \chi} \nu_x a_i(x) \phi_j(x)}{\sum_{x \in \chi} \nu_x a_i(x)}$$

Delay Analysis for Assembly System:

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_{analysis}$</td>
<td>mean delay suffered by arrivals at the intersection</td>
</tr>
<tr>
<td>d_{batch}</td>
<td>mean delay suffered by batched arrivals at the intersection</td>
</tr>
<tr>
<td>$d_{assembly}$</td>
<td>mean delay suffered by arrivals during the batching process</td>
</tr>
<tr>
<td>$\mathbb{E}W^{(P)}$</td>
<td>expected delay suffered by motorcycle arrivals (pair of motorcycles) in the assembling queues</td>
</tr>
<tr>
<td>$\mathbb{E}W^{(c)}$</td>
<td>expected delay suffered by car arrivals in the assembling queues</td>
</tr>
<tr>
<td>$\mathbb{E}N^{(P)}$</td>
<td>expected number of pair of motorcycles in the assembling queues</td>
</tr>
<tr>
<td>$\mathbb{E}N^{(c)}$</td>
<td>expected number of cars in the assembling queues</td>
</tr>
</tbody>
</table>

Mean delay suffered by batched arrivals d_{batch} at the intersection is obtained from either Webster or Sengupta analysis.
CHAPTER 8. EXTENDING MODELING AND ANALYSIS TO MOTORCYCLE TRAFFIC

Given,

\[\mathbb{E}N^{(c)} = \sum_{i=1}^{\infty} i \nu_i \]
\[\mathbb{E}N^{(P)} = \nu_1 \]
\[\mathbb{E}W^{(P)} = \frac{\mathbb{E}N^{(P)}}{\lambda_m} \]
\[\mathbb{E}W^{(c)} = \frac{\mathbb{E}N^{(c)}}{\lambda_c} \]

The mean delay suffered by arrivals during the assembly process \((d_{\text{assembly}})\) can be obtained as follows.

\[
d_{\text{assembly}} = \frac{2\lambda_m}{2\lambda_m + \lambda_c} \mathbb{E}W^{(P)} + \frac{\lambda_c}{2\lambda_m + \lambda_c} \mathbb{E}W^{(c)}
\]

The mean delay suffered by arrivals at the intersection \((d_{\text{analysis}})\) is given by

\[
d_{\text{analysis}} = d_{\text{batch}} + d_{\text{assembly}}
\]

Fixed Point Iteration Method

We see that once we have computed the following probabilities, then we can use them to compute the mean delay using Webster’s formula and its extensions. But we see that the \(f_{ij}\) values depend on \(q_0\) and \(q_1\) values and value of \(\mu\). And to compute the value of \(\mu\) we need the \(f_{ij}\) values. Thus we would do a fixed point iteration by initially assuming the values of \(q_0, q_1, \mu\) and iteratively compute the \(f_{ij}\) values required to obtain the mean delay. The question remains as to how to compute the \(q_0\) and \(q_1\) values for an interrupted queue.
Parameters used for traffic flow containing motorcycles

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Traffic Model - MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{V}</td>
<td>${m, c}$</td>
</tr>
<tr>
<td>${l_m, l_c}$</td>
<td>${2m, 6m}$</td>
</tr>
<tr>
<td>${d_{mm}^{(2)}, d_{mm}^{(4)}, d_{mc}, d_{mc}^{(2)}, d_{cm}^{(2)}, d_{cm}^{(4)}, d_{cc}^{(0)}, d_{cc}^{(2)}}$</td>
<td>${2.5m, 3m, 7m, 8.5m, 3m, 3.5m, 8m, 9.5m}$</td>
</tr>
<tr>
<td>${f_{mm}, f_{mc}, f_{cm}, f_{cc}}$</td>
<td>${0.7, 0.3, 0.6, 0.4}$</td>
</tr>
<tr>
<td>${\pi_m, \pi_c}$</td>
<td>${0.667, 0.333}$</td>
</tr>
<tr>
<td>Preceding probability Dist. for $m(p_{mi}, i \in \mathcal{V})$</td>
<td>${0.7, 0.3}$</td>
</tr>
<tr>
<td>Preceding probability Dist. for $c(P_{ci}, i \in \mathcal{V})$</td>
<td>${0.6, 0.4}$</td>
</tr>
</tbody>
</table>

Table 8.2: Parameters used for traffic flow containing motorcycles

Approximation

We use the probabilities that an uninterrupted queue is empty/has exactly one customer, and use those values for q_0 and q_1. The results of the analysis done for a preemptive M/SM/1 interrupted model are given below.
We see that the analysis overestimates the delay. There are basically two assumption that we
make in the analysis that could be the reason for this over estimation, 1) we assumes the arrival of batches into the interrupted queue to be Poisson, which is actually not true, 2) the q_0 and q_1 values that we use are actually from the analysis for the uninterrupted queue.

To identify which of these assumptions are causing the overestimation, we used the analysis to compute the mean delay in an untinterrupted queue instead of an interrupted queue. Now the second assumption becomes true. The results are given below.

X-axis Degree of Saturation = $\frac{\lambda \tau}{g/c}$; where τ is the mean service time of the FCFS queue (queue with no batching) of Traffic Model - MC.
Figure 8.6: Normalised Mean Delay V/s Degree of Saturation (Traffic Model-MC) : Comparison between simulation of M/SM/1 uninterrupted model, and Webster approximation for M/SM/1 uninterrupted queue with batch arrivals whose service time has been calculated using fixed point iteration.

(a) Percentage of 2-wheelers = 80%.

(b) Percentage of 2-wheelers = 50%
Figure 8.7: Normalised Mean Delay V/s Degree of Saturation (Traffic Model-MC) : Comparison between simulation of M/SM/1 uninterrupted model, and Webster approximation for M/SM/1 uninterrupted queue with batch arrivals whose service time has been calculated using fixed point iteration.

From figure [8.6a] we see that the delay from analysis is still an over estimate. As the percentage
of 2 wheelers decrease, the amount of batching also decreases. Figure [8.7b] shows the mean delay comparison for extremely low percentage of 2-wheelers. Here Poisson arrivals is a very reasonable approximation for the arrivals into the interrupted queue (due to low percentage of batching). And we see that the Webster approximation works really well in that case. So we must assume that analysis over estimates the mean delay because of the assumptions that arrivals into interrupted queue are Poisson and estimating q_0 and q_1 using the uninterrupted queue.
Chapter 9

Future Work

We have thus modelled a traffic intersection by using a Poisson process to model the arrival process and using the car following model for the service process. We have also analysed different models of intersection depending on the service distribution used at the intersection, and have found approximations for each of those models. We would look to enhance the analytical model for 2-wheeler traffic to remove the over estimation that is occurring while computing the mean delay. Extending the analysis of tandem queue model to accurately estimate the mean delays for different values of offset between the green times, needs to be looked at. Since we have found that batching reduces the mean delay for a given arrival rate, it would be interesting to see if we could optimize the green times so that the saturation throughput at the intersection is maximised for a given delay bound. We would also like to look at techniques like mobile sensing and crowd sensing, to see if we could estimate the traffic at an intersection and thus provide an accurate estimation of delay a vehicle could suffer at that intersection.
Bibliography

