Building Efficient Wireless Sensor Networks with Low-Level Naming

John Heidemann et al.
USC/ISI
Key Contributions

- Exploiting application-specific naming and in-network processing for building efficient scalable wireless sensor networks.
- First software architecture implemented in an operational, multi-application sensor-network.
Outline

- Motivation
- Related Work
- Software Architecture
- Implementation Testbed
- Results
- Discussions
Motivation (or why not IP naming?)

- Traditional IP-based naming
 - Hierarchical Addressing
 - Binding At Runtime
 - Communication Overhead
 - High Bandwidth, Small Delay
- New class of distributed systems with unique requirements
 - b/w, energy constraints
 - unpredictable node and packet losses
 - Communication rather than computation is bottleneck
Motivation (or why attribute-based naming?)

- **Low-Level communication using attribute**
 - External to network topology and relevant to the application
 - Data-centric communication primitives
 - *Avoids overhead of binding and discovery*
 - *Exploits knowledge of sensor data types*

- **In-network processing**
 - Process and filter data at node
 - *Avoids Communication overhead (aggregation, nested queries etc)*
 - *Exploits knowledge about sensor applications*
Motivating Example

- Wireless monitoring system with light+motion sensors:
 - Idle state: audio sensors off, light sensors periodically monitor
 - Queries can be on either audio or light
 - Queries diffuse into n/w, handled geographically
 - Inter-sensor interaction can be pushed into n/w
Related Work

- Internet ad hoc routing
- Jini → resource discovery
- The Piconet
- SPIN
- LEACH
- DataSpace
- COUGAR
- Declarative Routing
- Attribute-based name system
System Architecture Description

- Data managed as list of *attribute-value-operation* tuples
- *Matching rules* to identify either data arrival at destination, or filter processing
- Directed Diffusion as task-specific publish/subscribe distribution mechanism
Summarizing Directed Diffusion

(a) Interest propagation

(b) Initial gradients set

(c) Data delivery along reinforced path
Attribute Matching

- Attributes have unique keys (domain)
- Have well-defined data format (even structures)
- Pattern matching done by operator fields
- Operators can be arithmetic or logic
- Can QL be shown to be complete for any domain?
 - Rectangulation of region, etc.
Matching Algorithm

Given two attribute sets A and B
For each attribute a in A where a.op is a formal {
 Matched=false
 For each attribute b in B where a.key=b.key and b.op is an actual:
 if a.val compares with b.val using a.op then matched=true
 if not matched, return false
}
Return true
Filters

- Unique to system
- Application specific: have access to all data and state
- Register for handling data types, distributed as mobile code packages
- Can modify/extend/suppress/delete data and state
- For ex: generate confidence metrics about multiple sensors from multiple sampled data about number of 4-legged animals
In-network data aggregation

- Binary/region/application-specific aggregation

- *Opportunistic* aggregation:
 - Sensor selection and tasking through app-level attributes
 - Data cached as it traverses
 - App filters act on data
Nested Queries

- Goal: Reduce work (duty cycle) of multi-modal sensors by leveraging proximity and optimizing correlation triggers:
 - Ex: accelerometer triggering GPS receiver, traffic triggered n/w imager, motion sensor triggering steerable camera, etc.
 - Can be done both by source and in-network node processor
 - From paper:
Nested Queries

- Create sub-task at triggered sensor that constantly monitors nested query for events from initial sensors.
- In case of multiple triggered sensors:
 - Random-delays+election mechanism
 - Use weighted distance by leveraging location (external frame of reference) to find best nodes.
Experimental Testbed

- Quantifies benefits of aggregation, nested queries, performance of matching algorithms
- 14 PC/104 nodes, 13kb/s Radiometrix RPC modems
- 1 sink, multiple sources, ~ 4 hops apart
Measurements Notes

- MAC completely dominates energy measurements
- Don’t have TDMA=>approximate energy consumed:
 - $P = d \cdot p_l \cdot t_l + p_r \cdot t_r + p_s \cdot t_s$
 - 1:3:40 time ratios, ~1:1.5:2 power ratios
 - Max. of 10% duty cycle for realistic benefits
Energy graph

Bytes sent by diffusion (per received distinct event)

Number of Sources

With suppression

Without suppression
Notes for this experiment

- Measures bytes/event
- Unsophisticated MAC:
 - No RTS/CTS, no ARQ
 - Message fragmented into 27-byte units
 - Painfully obvious at high congestion levels
- Good back-of-envelope verification
- Upto 40% reduction for 4 sources
- Discrepancy from prev. simulation attributable to higher exploratory message %
- Delay possible killer
Nested Query Performance
Experiment notes

- Light state changes @1min, signal @30Hz
- Heavy congestion and loss
- Missing events=>increased latency
- Much sharper drop-off for 1-level queries
- Only 1 triggered sensor, effects more radical for more
Cost of matching
Matching Cost notes

- Cost of matching linear with no. of elements
- Incremental costs insensitive to attribute type
- Match/EQ more expensive than Match/IS
- Several optimizations possible:
 - Separate actuals from formals
 - Order them in decreasing order of rejection probability
Lessons

- Results:
 - Minimal CPU overhead of matching
 - Nested queries and filters useful
 - Low-level naming and app-specific filtering broadly a success

- Unexpected:
 - Asymmetric links: DD degrades
 - Intermittent connectivity: multi-path dissemination?

- Other future work:
 - Heavy congestion => sense-nets must adapt to uneven densities
 - Understand tradeoffs between overhead & reliability, effects of various free parameters (i.e., parameterize), etc.
 - Include more feedback and congestion control into loop
 - Energy-aware MAC protocols absolutely must
Problems

- Scalability
- Data Reliability
 - No. of events delivered in a given time?
- Expressiveness of QL/matching
 - Will dictate what queries can be handled
- Effects of delay
Routing and Data Dissemination - Synthesizing Ideas

- Proactive Dissemination
 - Two-Tier Data Dissemination
 - SPIN (?)
 - Rumor Routing

- On-Demand Dissemination
 - Directed Diffusion

- Each suitable in a different setting
 - Either for long-standing or one-shot queries